Part Number Hot Search : 
LT4851 15V25 AT80C5 2SK1660 THMY7 703209Y AD7663 27260ZNA
Product Description
Full Text Search
 

To Download SAA7115 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 CS-PD HAMBURG
Pr eli ND m A ina req ry uir ed
SAA7115 CVIP2
PAL/NTSC/SECAM Video Decoder with Adaptive PAL/NTSC Comb Filter, High Performance Scaler, I2C Sliced Data Readback and SQ Pixel Output PRELIMINARY File under CS-PD Hamburg, PC-P
Contents subject to change without notice.
Datasheet
23 Oct 2001
Philips Semiconductors
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
CONTENTS 1 2 DOCUMENT INFO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Pr eli ND m A ina req ry uir ed
2.1 2.2 2.3 2.4 2.5 2.6 2.7 Video Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Combfilter Video Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Video Scaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 VBI Data Slicer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 General Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Summary SAA7114 versus SAA7115. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 4 5 6 7 GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 QUICK REFERENCE DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 PINNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 7.1 7.2 7.3 8.1 Pinning List and Pinning Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Pin Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 SAA7115 Pin Strapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 8 FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8.2 8.3 8.4 Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8.1.1 Analog input processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8.1.1.1 Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 8.1.1.2 Gain control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 8.1.2 Chrominance and luminance processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 8.1.2.1 Chrominance path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 8.1.2.2 Luminance path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 8.1.2.3 Brightness Contrast Saturation (BCS) control and decoder output levels . . . . . . . . . . . 38 8.1.3 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 8.1.4 Clock generation circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 8.1.5 Power-on reset and Chip Enable (CE) input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Output Formatter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Scaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 8.3.1 Acquisition control and task handling (subaddresses 80H, 90H, 91H, 94H to 9FH and C4H to CFH) 50 8.3.1.1 Input field processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 8.3.1.2 Task handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 8.3.1.3 Output field processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 8.3.2 Horizontal scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 8.3.2.1 Horizontal prescaler (subaddresses A0H to A7H and D0H to D7H) . . . . . . . . . . . . . . . 55 8.3.2.2 Horizontal fine scaling (variable phase delay filter; subaddresses A8H to AFH and D8H to DFH)60 8.3.3 Vertical scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 8.3.3.1 Line FIFO buffer (subaddresses 91H, B4H and C1H, E4H) . . . . . . . . . . . . . . . . . . . . . 60 8.3.3.2 Vertical scaler (subaddresses B0H to BFH and E0H to EFH) . . . . . . . . . . . . . . . . . . . . 61 8.3.3.3 Use of the vertical phase offsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 VBI-data decoder and capture (subaddresses 40H to 7FH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 8.4.1 VBI Data Slicer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 8.4.2 I2C Readback of sliced VBI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Confidential - NDA required page 2
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
8.4.3
Pr eli ND m A ina req ry uir ed
8.5 8.6 8.7 9 INPUT/OUTPUT INTERFACES AND PORTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 9.1 9.2 9.3 9.4 9.5 9.6 9.7 Analog terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Audio clock signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Clock and real-time synchronization signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Video expansion port (X-port) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 9.4.1 X-port configured as output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 9.4.2 X-port configured as input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Image port (I-port) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Host port for 16-bit extension of video data I/O (H-port) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Basic input and output timing diagrams I-port and X-port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 9.7.1 I-port output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 9.7.2 X-port input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 10 BOUNDARY SCAN TEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 10.1 Initialization of boundary scan circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 10.2 Device identification codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 11 LIMITING VALUES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 12 THERMAL CHARACTERISTICS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 14 APPLICATION INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 15 DEVICE PROGRAMMING OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 13 CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 15.1 I2C-bus description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 15.2 Register Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 16 DETAILED DESCRIPTION OF THE CONTROL REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Confidential - NDA required page 3
Filename: SAA7115_Datasheet.fm
Sliced VBI Data Output at the I-Port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 8.4.3.1 Euro WST, US WST and NABTS Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 8.4.3.2 WSS 625 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 8.4.3.3 WSS 525 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 8.4.3.4 VPS Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 8.4.3.5 Closed Caption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 8.4.3.6 Moji Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 8.4.3.7 VITC Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 8.4.3.8 Open Data Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Image port output interface (subaddresses 84H to 87H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 8.5.1 Scaler output formatter (subaddresses 93H and C3H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 8.5.2 Video FIFO (subaddress 86H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 8.5.3 Text FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 8.5.4 Video / text arbitration and Data packing (subaddress 86H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 8.5.4.1 VBI insertion in SAV/EAV mode (bit SLDOM[3] = `1') . . . . . . . . . . . . . . . . . . . . . . . . . . 72 8.5.4.2 Data Packing (bit IMPAK (86H) and programming of the pulse generator via addr. F5H to FBH)73 8.5.5 Data stream coding and reference signal generation (subaddresses 84H, 85H and 93H) . . . . . . 73 Scaler Backend clock generation (subaddresses 30H to 3FH). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 8.6.1 Square Pixel Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 8.6.1.1 The second PLL (PLL2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Audio clock generation (subaddresses 30H to 3FH). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 8.7.1 Audio clock generation without analog PLL (CGC2) enhancement . . . . . . . . . . . . . . . . . . . . . . . . 82 8.7.1.1 Master audio clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 8.7.1.2 Signals ASCLK and ALRCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 8.7.2 Audio clock generation with analog PLL (CGC2) support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 8.7.3 Other control signals for audio clock generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Pr eli ND m A ina req ry uir ed
Confidential - NDA required page 4
Filename: SAA7115_Datasheet.fm
16.1 Chip Version / Ident Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 16.1.1 Chip Version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 16.1.2 Chip ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 16.2 Programming Register Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 16.2.1 Subaddress 01 Analog Input Control 0, Increment Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 16.2.2 Subaddress 02 Analog Input Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 16.2.3 Subaddress 03 Analog Input Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 16.2.4 Subaddress 04 Analog Input Control 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 16.2.5 Subaddress 05 Analog Input Control 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 16.2.6 Subaddress 06 Horizontal Sync Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 16.2.7 Subaddress 07 Horizontal Sync Stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 16.2.8 Subaddress 08 Sync Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 16.2.9 Subaddress 09 Luminance control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 16.2.10 Subaddress 0A Decoder Brightness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 16.2.11 Subaddress 0B Decoder Contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 16.2.12 Subaddress 0C Decoder Saturation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 16.2.13 Subaddress 0D Chrominance Hue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 16.2.14 Subaddress 0E Chrominance Control 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 16.2.15 Subaddress 0F Chrominance Gain Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 16.2.16 Subaddress 10 Chrominance/Luminance Control 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 16.2.17 Subaddress 11 Mode / Delay Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 16.2.18 Subaddress 12 RTS0/1 Output Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 16.2.19 Subaddress 13 and 1B RT / X-port Output Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 16.2.20 Subaddress 14 Analog / ADC / Auto/ Compatibility Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 16.2.21 Subaddress 15, 17VGATE Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 16.2.22 Subaddress 16, 17 VGATE Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 16.2.23 Subaddress 17 Misc./VGATE-MSB's . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 16.2.24 Subaddress 18 Raw data Gain Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 16.2.25 Subaddress 19 Raw data Offset Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 16.2.26 Subaddress 1A Color Killer Level Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 16.2.27 Subaddress 1B Misc. Chroma Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 16.2.28 Subaddress 1C Enhanced Combfilter Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 16.2.29 Subaddress 1D Enhanced Combfilter Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 16.2.30 Subaddresses 1E, 1F Status Bytes Video Decoder (read-only register) . . . . . . . . . . . . . . . . . . . 157 16.3 Programming Register Audio Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 16.3.1 Subaddresses 30 to 32 AMCLK Cycles per Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 16.3.2 Subaddresses 34 to 36 AMCLK Nominal Increment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 16.3.3 Subaddress 38 Ratio AMXCLK to ASCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 16.3.4 Subaddress 39 Ratio ASCLK to ALRCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 16.3.5 Subaddress 3A Audio Clock Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 16.4 Programming Register VBI data slicer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 16.4.1 Subaddress 40 Basic Slicer Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 16.4.2 Subaddress 41 to 57 Line Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 16.4.3 Subaddress 58 Programmable Framing Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 16.4.4 Subaddress 59 Horizontal Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 16.4.5 Subaddress 5A Vertical Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 16.4.6 Subaddress 5B Field Offset, MSB's H/V-Offsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 16.4.7 Subaddress 5D: SLDOM Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 16.4.8 Subaddress 5E SDID codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 16.4.9 Subaddress 5E (read-only register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 16.4.10 Subaddress 66 to 7F I2C Readback of decoded VBI Data (read-only register). . . . . . . . . . . . . . 167 16.4.10.1 Subaddress 66 to 6A I2C Readback of Closed Caption Data (CC525 and CC625) (read-only register)167 16.4.10.2 Subaddress 6B to 71 I2C Readback of Closed Caption Data (WSS525 and WSS625)
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Pr eli ND m A ina req ry uir ed
17 PROGRAMMING START SET-UP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 17.1 17.2 17.3 17.4 Decoder part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Audio clock generation part. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 Data slicer and data type control part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 Scaler and interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 17.4.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 17.5 PLL2 and pulse generator control part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 18 PACKAGE OUTLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 Confidential - NDA required page 5
Filename: SAA7115_Datasheet.fm
(read-only register)168 16.4.10.3 Subaddress 72 to 76 I2C Readback of Gemstar1x Data (read-only register) . . . . . . . 169 16.4.10.4 Subaddress 77 to 7F I2C Readback of Gemstar2x Data (read-only register) . . . . . . . 170 16.5 Programming Register - Interfaces and Scaler Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 16.5.1 Subaddress 80: Global Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 16.5.2 Subaddress 83 to 87: Global Interface Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 16.5.3 Subaddress 88: Sleep and Power save control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 16.5.4 Subaddress 8F (read-only register): status information scaler part . . . . . . . . . . . . . . . . . . . . . . . 181 16.5.5 Subaddress 90: event handler control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 16.5.6 Subaddress 91 to 93: scaler input and I-port output configuration. . . . . . . . . . . . . . . . . . . . . . . . 182 16.5.7 Subaddress 94 to 9B: Scaler Input Acquisition Window Definition . . . . . . . . . . . . . . . . . . . . . . . 185 16.5.8 Subaddress 9C to 9F: Scaler Output Window Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 16.5.9 Subaddress A0 to A2: Prescaling and FIR filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 16.5.10 Subaddress A4 to A6: Brightness, Contrast and Saturation Control . . . . . . . . . . . . . . . . . . . . . . 190 16.5.11 Subaddress A8 to AE: Horizontal Phase Scaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 16.5.12 Subaddress B0 to BF: Vertical Scaling Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 16.6 Programming Register - second PLL (PLL2) and Pulse Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 16.6.1 Subaddress F0 to F5 and FF: second PLL (PLL2) Programming Parameters . . . . . . . . . . . . . . 194 16.6.2 Subaddress F6 to FB: Pulse Generator Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
1 1.1
DOCUMENT INFO Revision History
Pr eli ND m A ina req ry uir ed
VERSION NO REVISION DATE DESCRIPTION OF STATUS BY 0.5 5 Oct 2001 9 Oct 2001 9 Oct 2001 Initial Version H. Lambers 0.51 0.52 0.6 Fixed LCBW recommended setting H. Lambers VBSL setting changed, scaler and PLL2 examples , sect. 16.4 and 16.5 updated A. Mittelberg 10 Oct 2001 18 Oct 2001 19 Oct 2001 23 Oct 2001 Added application examples Status at CQS Minor updates H. Lambers 0.65 0.66 0.67 H. Lambers H. Lambers Fixed application example drawing H. Lambers 2 FEATURES 2.1 Video Acquisition * Six analog inputs, internal analog source selectors, (e.g.: 6x CVBS or(2 x YC and 2 CVBS) or (1 x YC and 4xCVBS) * Two built in analog anti-alias filters * Two improved 9 Bit CMOS analog-to-digital converter in differential CMOS style at two-fold ITU-656 oversampling (27MHz) * Fully programmable static gain or automatic gain control (AGC) for the selected CVBS or Y/C channel * Automatic Clamp Control (ACC) for CVBS, Y and C * signals are available on the expansion port (X-port) * Switchable white Peak Control * Two 9-bit Video CMOS AD Converters, digitized CVBS or Y/C * Requires only one crystal (32.11 MHz or 24.576 MHz) for all standards * Independent Gain and Offset - adjustment for raw data path 2.2 Combfilter Video Decoder * Digital PLL for Synchronization and Clock Generation from all Standards and Non Standard Video Sources e.g. consumer grade VTR * Automatic detection of 50/60Hz field frequency, and automatic recognition of all common broadcast standards * Enhanced Horizontal and vertical Sync Detection - PAL BGDHIN, - PAL M, * Luminance and chrominance signal processing for - Combination-PAL N, - NTSC M, - NTSC-Japan, - NTSC 4.43 and - SECAM (50 Hz / 60 Hz) * PAL delay line for correcting PAL phase errors Confidential - NDA required page 6
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
* Improved 2/4-line comb filter for two dimensional chrominance/luminance-separation operating with adaptive combfilter parameters. - Increased Luminance and Chrominance Bandwidth for all PAL and NTSC-standards
Pr eli ND m A ina req ry uir ed
- Reduced cross colour and cross luminance artefacts * Independent Brightness Contrast Saturation (BCS) - adjustment for decoder-part * User programmable sharpness control - according to Macrovision standard - indicating the level of protection * Detection of Copy protected input signals: * Automatic TV/VCR detection * 10 bit wide video output at combfilter video decoder * X-port video output either as: - Noise shaped 8 bit ITU-656 video or - Full 10 bit ITU-656 interface (DC-performance 9 Bit) 2.3 Video Scaler * Horizontal and Vertical Down-Scaling and Up-Scaling to randomly sized windows * Horizontal and Vertical Scaling range: variable zoom to 1/64 (icon) (Note: H and V zoom are restricted by the transfer data rates) * Vertical Scaling with Linear Phase Interpolation and Accumulating Filter for Anti-Aliasing (6 bit phase accuracy) * Conversion to Square Pixel format * Generation of a video output stream with improved synchronisation grid at the I-Port * Fieldwise switching between Decoder-part and Expansion port (X-port) input * Brightness, contrast and saturation controls for scaled outputs * Two independent programming sets for scaler part, to define two "ranges" per field or sequences over frames 2.4 VBI Data Slicer * Versatile VBI-data decoder, slicer, clock regeneration and byte synchronization, e.g. for: - WST525 / WST625 (CCST) - VPS - US / European Close Caption (CC), - WSS525 (CGMS), WSS625, - US NABTS - VITC 525 / VITC 625 - GEMSTAR 1x - GEMSTAR 2x - Moji * I2C Readback of the following decoded data types: - US Close Caption (CC) - European Close Caption (CC) Confidential - NDA required page 7
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
- WSS525 (CGMS) - WSS625 (CGMS) - GEMSTAR 1x - GEMSTAR 2x
Pr eli ND m A ina req ry uir ed
2.5 Clock Generation * On-Chip Line Locked Clock Generation according ITU601 * Second onboard analog PLL to be used for: * Generation of a frame locked Audio Master Clock to support a constant number of audio clocks per video field. - On-Chip Line Locked Square Pixel Clock Generation for PAL and NTSC Square Pixel Video Output or - optionally Generation of a low jitter frame locked Audio Clock from the Audio Master Clock through reuse of the analog Square Pixel PLL. Supported audio clock frequencies are 256*fs, 384*fs and 512*fs (fs = 32 KHz, 44.1 KHz or 48 KHz). 2.6 General Features * CMOS 3.3 V device with 5 V tolerant digital inputs and I/O ports * Programming via serial I2C-bus, full read-back ability by an external controller, bit rate up to 400 kbit/s * Software controlled power saving stand-by modes * Boundary Scan Test circuit complies to the IEEE Std. 1149.b1 -1994 Confidential - NDA required page 8
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
2.7
Summary SAA7114 versus SAA7115
Pr eli ND m A ina req ry uir ed
Table 1 SAA7114 versus SAA7115 ISSUE SAA7114 SAA7115 Pin compatibility reference pinning pin-compatible to SAA7114 Analog Frontend 2 x 9 bit A/D- converters 2 x Low Noise 9 bit A/D- converters 27 MHz CCIR 2x-oversampling 13.5 MHz CCIR sampling Standard White-Peak Control watching raw data 4 lines adaptive comb filter Manual TV/VCR switching Regular SECAM 50 Hz Standard White-Peak Control watching raw data plus baseband luminance data Improved 4 lines adaptive comb filter (reduced artifacts) Automatic TV/VCR detection Combfilter Decoder Semi-automatic color standard detection Fully-automatic color standard detection Regular SECAM 50 Hz and SECAM 60 Hz (Vietnam) Automatic color reducer (avoids color limitation with low burst) Extended safe lock for VCR feature modes Color overflow detection Safe lock for VCR feature modes Fast frame lock (ca. 2 fields) Ultra-fast frame lock (almost 1 field) Macrovision Detection `Pseudo Sync.'Macrovision Detection only Comprehensive Macrovision Detection: - `Pseudo Sync.' detection and/or - Split Burst detection (Type 2 / Type 3) Scaled Video Output Generation of embedded ITU-656 auxiliary codes at the I-Port video output Generation of embedded ITU-656 auxiliary codes at the I-Port video output with improved synchronization raster for VCR signals Clock Generation Scaling to Square Pixel Data representation Scaling to Square Pixel Data representation with extra integrated clock-PLL (PLL2, CGC2) to generate physical Square Pixel Clock signal of 29.5 MHz (PAL) or 24.5454 MHz (NTSC). Frame- locked audio clock (constant number of clock cycles per frame), optionally through analog PLL (CGC2) Field- locked audio clock (constant number of clock cycles per field) Versatile VBI- data slicer VBI Data Slicing and Output Versatile VBI- data slicer, incl. CGMS (Line 20 NTSC) and GemStar 2x (EPG) Output of sliced data embedded into I-Port output stream Output of sliced data embedded into I-Port output stream and optionally per I2C register readback for CC, CGMS, Gemstar1x and Gemstar2x, Confidential - NDA required page 9
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
3
GENERAL DESCRIPTION
Pr eli ND m A ina req ry uir ed
The SAA7115 is a combination of a two channel analog preprocessing circuit including Source-Selection, Anti-Aliasing Filter and A/D-converter, an Automatic Clamp and Gain Control, two Clock Generation Circuits (CGC1, CGC2), a Digital Multi Standard Decoder containing two-dimensional chrominance/luminance separation by an improved adaptive comb filter and a high performance scaler, including variable horizontal and vertical up and down scaling and a BrightnessContrast- Saturation- Control circuit. The decoder is based on the principle of line-locked clock decoding and is able to decode the colour of PAL, SECAM and NTSC signals into ITU-601 compatible colour component values. The SAA7115 accepts as analog inputs CVBS or S-Video (Y-C) from TV or VCR sources, including weak and distorted signals. The expansion port (X-port) for digital video (bi-directional half duplex, D1 compatible) can be used either to output unscaled video using 10 bit or 8 bit dithered resolution or to connect to other external digital video sources for reuse of the SAA7115 scaler features. The enhanced image port (I-port) of the 7115 supports 8 (16) bit wide output data with auxiliary reference data for interfacing to e.g. VGA controllers, settop box applications etc. It is also possible to output video in Square Pixel formats accompanied by a square pixel clock of the appropriate frequency. In parallel SAA7115 incorporates also provisions for capturing the serially coded data in the vertical blanking interval (VBI-data) of several standards. Three basic options are available to transfer the VBI data to other devices: * capturing raw video samples, after interpolation to the required output data rate, using the scaler and transferring the data to a device connected to the I-port, * slicing the VBI data using the build in VBI data slicer (data recovery unit) and transferring the data to a device connected to the I-port * slicing the VBI data using the build in VBI data slicer and reading out the sliced data via the I2C bus (for several slow VBI data type standards only) SAA7115 incorporates also a frame locked audio clock generation. This function ensures that there is always the same number of audio samples associated with a frame, or a set of fields. This prevents the loss of sychronisation between video and audio, during capture or playback. Furthermore the second analog onboard PLL optionally can be used to enhance this audio clock to a low jitter frame locked audio clock. The SAA7115 is controlled via I2C-bus (full write / read capability for all programming registers, bit rate up to 400 kbits/s) Confidential - NDA required page 10
Filename: SAA7115_Datasheet.fm
The SAA7115 is a video capture device for various applications ranging from small screen products like e.g. digital settop boxes, personal video recording applications to big screen devices like e.g. LCD projectors due to it's improved combfilter performance and 10 bit video output capabilities.
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
4
QUICK REFERENCE DATA SYMBOL VDDx VDDCx VDDA Tamb PA+D PARAMETER digital supply voltage digital supply voltage range core analog supply voltage range ambient temperature range MIN 3.0 3.0 0 TYP 3.3 3.3 MAX 3.6 3.6 70 UNIT V V
Pr eli ND m A ina req ry uir ed
3.1 3.3 3.5 V C W analog and digital power consumption (1) t.b.d.
1. Power consumption is measured in CVBS-input mode (only one ADC active) and 8 bit image port output mode, expansion port is tristated
5
ORDERING INFORMATION
EXTENDED TYPE NUMBER SAA7115
PACKAGE
PINS 100
PIN POSITION LQFP100
MATERIAL Plastic
CODE
SOT407-CD5
Confidential - NDA required
page 11
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
6
CS-PD Hamburg
Block diagram SAA7115
Note:
TEST5
TEST4
TEST3
TEST2
TEST1
HPD[7:0]
TEST0
XPD[7:0]
XRDY
XCLK
LLC2
SDA
XDQ
RTS0
RTS1
Philips Semiconductors
BLOCK DIAGRAM
RTCO
XTRI
XRH*)
XRV*)
SCL
LLC
Confidential - NDA required
IPD[7:0] IDQ IGPH
The Pins RTCO and ALRCLK are used for configuration of the IIC interface and the definition of the crystal osc. frequency at RESET (pin strapping)
clock generation and power on control
Date:
Version:
Last edited by H. Lambers
37 40 39 41 8 5 33,43, 58,68, 83,93 VDDI VXSS VXDD ASCLK*) ALRCLK AMCLK*) AXMCLK
Filename: SAA7115_Datasheet.fm
94 95 81,82, 84-87, 89,90 92 91 96 80 64-67, 69-72 32 31 79 78 77 74 73 44 RT out eXpansion port pin mapping I/O control IIC X port I/O formatting video / text arbiter 54-57, 59-62 Horizontal Line Vertical Fine video 46 FIFO Scaling (Phase) FIR - Prefilter Prescaler and scaler BCS digital decoder with adaptive comb filter FIFO text 53 buffer
28 29 36 34 35
AGND
AI11
20
AI12
18
16
analog
AI21 AI22
14
dual
AI23
12
ADC
CVIP2
AI24
10
Scaling
52
Datasheet SAA7115
AOUT
22
AI1D
19
event controller
32 to 8(16)
IGPV
48
general purpose
MUX
IGP0
AI2D
13
VBI data slicer
FIFO
49
IGP1
puls generator
Fig.1 SAA7115 Block Diagram
A/B array Reg. MUX boundary scan test 9,15, 24 97 98 99 3 TDI TCK TMS VSSI VSSE VSSA TRSTN
RESON
30
PLL2
45
Image port pin mapping
CE
27
CGC2
ICLK
XTOUT
4
XTALI
7
programming
42
XTALO
6
frame locked audio clock PLL
audio clock
Register
ITRDY 47 ITRI
generation
1,25, 51,75
11,17, 23
38,63, 26,50, 76,100 88
2
TDO
VDDA
VDDE
10/23/01 0.67
Pr eli ND m A ina req ry uir ed
page 12
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
7 7.1
PINNING Pinning List and Pinning Diagram Pinning List SAA7115 PIN 1
Pr eli ND m A ina req ry uir ed
SYMBOL VDDE TDO TDI I/O/P P DESCRIPTION digital supply voltage 3.3 V (external pad supply) 2 3 O I Test Data Output for Boundary Scan Test (2) Test Data Input for Boundary Scan Test (with internal pull-up)(2) crystal oscillator output signal, auxiliary signal XTOUT VXSS 4 O P 5 ground pin for crystal oscillator XTALO XTALI VXDD 6 7 O I 24.576 (32.11) MHz crystal oscillator output; not connected if XTALI is driven by an external single-ended oscillator. Input terminal for 24.576 (32.11) MHz crystal oscillator or connection of external oscillator with TTL compatible square wave clock signal. supply voltage pin of crystal oscillator ground for analog inputs AI2x analog input 24 8 9 P P I VSSA2 AI24 10 VDDA2 AI23 11 P I analog supply voltage for analog inputs AI2x (3.3V) 12 analog input 23 AI2D AI22 13 I differential input for ADC channel 2 (pins AI24, AI23, AI22, AI21) analog input 22 14 I VSSA1 AI21 15 P I ground for analog inputs AI1x analog input 21 16 VDDA1 AI12 17 P I analog supply voltage for analog inputs AI1x (3.3V) analog input 12 18 AI1D AI11 19 I differential input for ADC channel 1 (pins AI12, AI11) analog input 11 20 21 I AGND AOUT VDDA0 VSSA0 P analog ground connection 22 O P P Analog test output (do not connect) 23 24 analog positive supply voltage for both internal CGC (Clock Generation Circuit) (3.3V) analog ground for internal CGC Confidential - NDA required page 13
Filename: SAA7115_Datasheet.fm
Table 2
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
SYMBOL VDDE VSSE CE
PIN 25 26
I/O/P P P I
DESCRIPTION digital supply voltage 3.3 V (external pad supply) digital ground (external pad supply)
Pr eli ND m A ina req ry uir ed
27 Chip Enable or RESET input (with internal pull up) LLC 28 O line-locked system clock output (27 MHz nominal), for backward compatibility, do not use for new applications line locked clock/2 output (13.5 MHz nominal) for backward compatibility, do not use for new applications LLC2 29 O RESON SCL 30 31 O RESet Output Not signal I (/O) I/O P IIC serial clock line (with inactive output path) IIC serial data line SDA VDDI 32 33 digital supply voltage 3.3 V internal core supply) RTS0 RTS1 34 35 O O real time status or sync information, controlled by subaddr. "11h and 12h" real time status or sync information, controlled by subaddr. "11h and 12h" RTCO 36 (I/) O Real Time Control Output: contains information about actual system clock frequency, field rate, odd/even sequence, decoder status, subcarrier phase and frequency and PAL sequence (according to RTC level 3.1, refer to external document "RTC Functional Specification" for details), can be strapped to supply via a 3.3 kOhm resistor to change the default IIC-wr-addresses from 42/43 (internal pull down) to 40/41. AMCLK VSSI 37 O P audio master clock output 38 digital ground (internal core supply) ASCLK 39 O audio serial clock output ALRCLK 40 (I/) O audio left/right clock output, Can be strapped to supply via a 3.3 kOhm resistor indicate that the default 24.576 MHz crystal (internal pull down) has been replaced by a 32.11 MHz crystal. AMXCLK ITRDY VDDI 41 I audio master external clock input (typing error corrected) target ready input, image port (with internal pull up) digital supply voltage 3.3 V (internal core supply) 42 I 43 44 45 P TEST0 ICLK IDQ O do not connect, reserved for future extensions and for Testing: scan output I/O O clock output signal for image-port, LCLK of LPB image port mode, or optional asynchron. backend clock input 46 output data qualifier for image port (optional: gated clock output) Confidential - NDA required page 14
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
SYMBOL ITRI
PIN 47
I/O/P I (/O)
DESCRIPTION image-port output control signal, effects all I-port pins incl. ICLK, enable and active polarity is under software control (bits IPE in subaddr. "87") output path used for Testing: scan output
Pr eli ND m A ina req ry uir ed
IGP0 IGP1 VSSE 48 49 O O P P general purpose output signal 0; image-port (controlled by subaddr. "84","85") general purpose output signal 1; image-port (controlled by subaddr. "84","85"), same functions as IGP0 digital ground (external pad supply) 50 51 VDDE digital supply voltage 3.3 V (external pad supply) IGPV 52 O multi purpose vertical reference output signal; image-port (controlled by subaddr. "84","85") IGPH IPD7 IPD6 IPD5 IPD4 VDDI 53 O multi purpose horizontal reference output signal; image-port (controlled by subaddr. "84","85") 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 O O O O P image port data output digital supply voltage 3.3 V (internal core supply) IPD3 IPD2 IPD1 IPD0 VSSI O O O O P image port data output digital ground (internal core supply) HPD7 HPD6 HPD5 HPD4 VDDI I/O I/O I/O I/O P Host port data I/O, carries UV chrominance information in 16 bit video I/O modes digital supply voltage 3.3 V (internal core supply) HPD3 HPD2 HPD1 HPD0 I/O I/O I/O I/O I Host port data I/O, carries UV chrominance information in 16 bit video I/O modes TEST1 do not connect, reserved for future extensions and for Testing: scan input Confidential - NDA required page 15
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
SYMBOL TEST2 VDDE VSSE
PIN 74 75 76 77 78 79
I/O/P I P P I
DESCRIPTION do not connect, reserved for future extensions and for Testing: scan input digital supply voltage 3.3 V (external pad supply) digital ground (external pad supply)
Pr eli ND m A ina req ry uir ed
TEST3 TEST4 TEST5 do not connect, reserved for future extensions and for Testing: scan input O I do not connect, reserved for future extensions and for Testing: scan output do not connect, reserved for future extensions and for Testing: scan input XTRI 80 I X-port output control signal, effects all X-port pins (XPD[7:0], XRH, XRV, XDQ and XCLK) enable and active polarity is under software control (bits XPE in subaddr. "83") expansion-port data: In eight bit video output mode: these signal represent the video bits 7 to 6. In ten bit video output mode: these signal represent the video bits 9 to 8. XPD7 XPD6 VDDI 81 82 I/O I/O P 83 84 85 86 87 88 89 90 digital supply voltage 3.3 V (internal core supply) XPD5 XPD4 XPD3 XPD2 VSSI I/O I/O I/O I/O P expansion-port data: In eight bit video output mode: these signal represent the video bits 5 to 2. In ten bit video output mode: these signal represent the video bits 7 to 4. digital ground (internal core supply) XPD1 XPD0 XRV I/O I/O expansion-port data: In eight bit video output mode: these signal represent the video bits 1 to 0. In ten bit video output mode: these signal represent the video bits 3 to 2. vertical reference I/O expansion-port: In ten bit video output mode: this signal represents the video bit 0. horizontal reference I/O expansion-port: In ten bit video output mode: this signal represents the video bit 1. digital supply voltage 3.3 V (internal core supply) clock I/O expansion port 91 I/O XRH VDDI 92 I/O P 93 94 XCLK XDQ I/O 95 I/O O I data qualifier I/O expansion port XRDY 96 task flag or read signal from scaler, controlled by XRQT (subaddr. 83H) TRSTN 97 Test ReSeT Not for Boundary Scan Test (with internal pull-up); for board design without Boundary Scan connect TRSTN to `ground'(1) Confidential - NDA required page 16
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
SYMBOL TCK TMS
PIN 98 99
I/O/P I I
DESCRIPTION Test Clock for Boundary Scan Test (with internal pull-up)(2) Test Mode Select for Boundary Scan Test or Scan Test (with internal pull-up)(2) digital ground (external pad supply)
Pr eli ND m A ina req ry uir ed
VSSE 100 P Notes 1. This pin provides easy initialization of BST circuitry. TRSTN can be used to force the TAP (Test Access Port) controller to the Test-Logic-Reset state (normal operation) at once 2. According to the IEEE1149.b1-1994 standard the pads TDI and TMS are input pads with a internal pull-up transistor and TDO a tri-state output pad. TCK, TRSTN are also build with internal pull_up Confidential - NDA required page 17
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
VSSE TMS TCK TRSTN
XPD2 XPD3 XPD4 XPD5 VDDI XPD6 XPD7 XTRI TEST5
Pr eli ND m A ina req ry uir ed
XRDY XDQ XCLK VDDI 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 XRH XRV XPD0 XPD1 VSSI 78 77 76 VDDE TDO TDI XTOUT VXSS XTALO XTALI VXDD VSSA2 AI24 VDDA2 AI23 AI2D AI22 VSSA1 AI21 VDDA1 AI12 AI1D AI11 AGND AOUT VDDA0 VSSA0 VDDE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
TEST4 TEST3 VSSE
SAA7115
PRELIMINARY
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
VDDE TEST2 TEST1 HPD0 HPD1 HPD2 HPD3 VDDI HPD4 HPD5 HPD6 HPD7 VSSI IPD0 IPD1 IPD2 IPD3 VDDI IPD4 IPD5 IPD6 IPD7 IGPH IGPV VDDE
CE LLC LLC2 RESON SCL SDA VDDI RTS0 RTS1 RTCO AMCLK VSSI
Fig.2 Pinning of the SAA7115
Confidential - NDA required
ASCLK ALRCLK AMXCLK ITRDY VDDI TEST0 ICLK IDQ ITRI IGP0 IGP1 VSSE
VSSE
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
page 18
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
7.2
Pin Configurations Pin Configurations
pin name 16 bit 8 bit input input modes modes D1 data input alternative 8 bit output input functions modes 16 bit output modes alternative output I/O configuration prog. bits functions XCODE[92[3]] XPE[83[1:0]] + pin XTRI OFTS[1B[4], 13[2:0]] XCODE[92[3]] XPE[83[1:0]] + pin XTRI OFTS[1B[4], 13[2:0]]
Table 3
pin no 81,82 84-87 89,90
Pr eli ND m A ina req ry uir ed
XPD7...0 Y data input D1 decoder output [7:0] D1 decoder output [9:2] 10-bit mode 94 XCLK clock input gated clock input decoder clock output XPE[83[1:0]} + pin XTRI XPCK[83[5:4]] XCKS[92[0]], 95 XDQ data qualifier input data qualifier output (HREF &&VREF gate) XDQ[92[1]] XPE[83[1:0]] + pin XTRI 96 XRDY input ready output active task A/B flag XRQT[83[2]] XPE[83[1:0]] + pin XTRI 92 XRH H-ref. input decoder H-ref output XDH[92[2]] XPE[83[1:0]] + pin XTRI D1 decoder output [1] 10-bit mode XDH[92[2]] XPE[83[1:0]] + pin XTRI OFTS[1B[4], 13[2:0]] 80 XRV V-ref. input decoder V-ref output XDV[92[5:4]] XPE[83[1:0]] + pin XTRI D1 decoder output [0] 10-bit mode XDV[92[5:4]] XPE[83[1:0]] + pin XTRI OFTS[1B[4], 13[2:0]] 80 XTRI output enable input XPE[83[1:0]] 64-67 69-72 HPD7...0 UV data input UV scaler output ICODE[93[7]] ISWP[85[7:6]] ICKS[80[3:2]] IPE[87[1:0]] + pin ITRI ICODE[93[7]] ISWP[85[7:6]] ICKS[80[3:2]] IPE[87[1:0]] + pin ITRI ICKS[80[1:0]] IPE[87[1:0]] + pin ITRI ICKS[80[3:2]] 54-57 59-62 IPD7...0 D1 scaler output Y scaleroutput 45 ICLK clock output clock input 46 IDQ data qualifier output gated clock output ICKS[80[3:2]] IDQP[85[0]] IPE [87[1:0]] + pin ITRI 42 ITRDY target ready input
Confidential - NDA required
page 19
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
16 bit 8 bit input input modes modes alternative 8 bit output input functions modes H-gate output 16 bit output modes
Date: Version:
10/23/01 0.67
pin no 53
pin name IGPH
alternative output I/O configuration prog. bits functions extended H-gate, H- pulses V-sync, V-pulses IDH[84[1:0]] IRHP[85[1]] IPE[87[1:0]] + pin ITRI IDV[84[3:2]] IRVP[85[2]] IPE[87[1:0]] + pin ITRI
Pr eli ND m A ina req ry uir ed
52 IGPV V-gate output 49 IGP1 general purpose IDG1[86[5],84[7:6]] IG1P[85[4]] IPE [87[1:0]] + pin ITRI IDG0[86[4],84[5:4]] IG0P[85[3]] IPE[87[1:0]] + pin ITRI 48 IGP0 general purpose 47 ITRI output enable input
7.3
SAA7115 Pin Strapping
Table 4
pin no 36 40
SAA7115 Pin Strapping
pin name RTCO
function
operates as IICSA pin, "0" = SA 42/43 hex (default), "1" = SA 40/41 hex
ALRCLK
0 = 24.576 MHz crystal (default) 1 = 32.110 MHz crystal
Note
1. Pin strapping is done by connecting the pin to supply via a 4.7 kOhm resistor. During the power up reset sequence the corresponding pins are switched to input-mode to read the strapping level. For the default setting no strapping resistor is necessary (internal pull down)
Confidential - NDA required
page 20
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
8 8.1
FUNCTIONAL DESCRIPTION Decoder ANALOG INPUT PROCESSING
Pr eli ND m A ina req ry uir ed
The SAA7115 offers six analog signal inputs, two analog main channels with source switch, clamp circuit, analog amplifier, anti-alias filter and video 9-bit CMOS ADC with a Decimation Filter (DF); see Figs 4 and 7. The anti-alias filters are adapted to the line-locked clock frequency via a filter control circuit. The characteristic is shown in Fig.3. During the vertical blanking period gain and clamping control are frozen.
MGD138
8.1.1
6
V (dB)
0
-6
-12 -18 -24 -30 -36
-42
0
2
4
6
8
10
12
f (MHz)
14
Fig.3 Anti-alias filter.
Confidential - NDA required
page 21
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
gain (dB)
3 0
Pr eli ND m A ina req ry uir ed
-3 -6 -9 -12 -15 -18 -21 -24 -27 -30 -33 -36 -39 -42 -45 -48 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 f (MHz)
Fig.4 Decimation filter.
Confidential - NDA required
page 22
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
8.1.1.1
Clamping
Pr eli ND m A ina req ry uir ed
8.1.1.2 Gain control
The gain control circuit receives (via the I2C-bus) the static gain levels for the two analog amplifiers or controls one of these amplifiers automatically via a built-in Automatic Gain Control (AGC) as part of the Analog Input Control (AICO). The AGC (automatic gain control for luminance) is used to amplify a CVBS or Y signal to the required signal amplitude, matched to the ADCs input voltage range. The AGC active time is the sync bottom of the video signal and is defined by the internally generated HSY pulse. Signal (white) peak control limits the gain at signal overshoots. The flow charts (see Figs 8 and 9) show more details of the AGC. The influence of supply voltage variation within the specified range is automatically eliminated by clamp and automatic gain control.
handbook, halfpage
The clamp control circuit controls the correct clamping of the analog input signals. The coupling capacitor is also used to store and filter the clamping voltage. An internal digital clamp comparator generates the information with respect to clamp-up or clamp-down. The clamping levels for the two ADC channels are fixed for luminance (120), chrominance (256) and for component inputs as component Y (32), components PB and PR (256). The clamping time is defined by the internally generated HCL pulse on the back porch of the video signal.
TV line analog line blanking
511
GAIN
CLAMP
120 1
HCL
HSY
MHB726
Fig.5
Analog line with clamp (HCL) and gain range (HSY).
Confidential - NDA required
page 23
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Pr eli ND m A ina req ry uir ed
analog input level controlled ADC input level +3 dB 0 dB maximum range 9 dB (1 V (p-p) 18/56 ) 0 dB -6 dB minimum
MHB325
Fig.6 Automatic gain range.
Confidential - NDA required
page 24
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Pr eli ND m A ina req ry uir ed
(Test signals from PLL1/PLL2) AOUT BUFFER +
BPFOUT1 BPFOUT2
TEST SELECTOR
Differential Frontend with 9 bit ADC's
AOSL (2:0)
AI24 AI23 AI22 AI21 AI2D
SOURCE SWITCH
CLAMP
ANALOG DAC9
CIRCUIT
AMPLIFIER
ANTI-ALIAS FILTER
BYPASS SWITCH
ADC 2
XPD[7:0], XRH
FUSE (1:0)
processed video
AI12 AI11 AI1D
SOURCE SWITCH
CLAMP
ANALOG DAC9
CIRCUIT
AMPLIFIER
ANTI-ALIAS FILTER
BYPASS
SWITCH
ADC 1
FUSE [1:0]
OFTS (3:0)
MODE
CLAMP
GAIN
ANTI-ALIAS CONTROL
CONTROL
CONTROL
CONTROL
VERTICAL BLANKING CONTROL
9
9
Decimation Filter 1
Decimation Filter 2
MODE [3:0]
HCL
GLIMB HSY GLIMT WIPA SLTCA
ANALOG
CONTROL
HOLDG GAFIX WPOFF GUDL[1:0] GAI2[8:0] GAI1[8:0] HLNRS UPTCV
VBSL
VBLNK SVREF
CROSS
MULTIPLEXER
9
9
CVBS/Y
CHROMA
Fig.7 Analog input processing using the SAA7115 as differential front-end with 9-bit ADC.
Confidential - NDA required
page 25
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Pr eli ND m A ina req ry uir ed
handbook, full pagewidth
ANALOG INPUT AMPLIFIER
gain
DAC
9
ANTI-ALIAS FILTER ADC
9
LUMA/CHROMA DECODER
NO ACTION
1
VBLK 1
0
HOLDG 1
0
X
0
1
HSY
0
0
> 510
1
0
<4
1
1
<1
0
1
> 510
0
X=0
X=1
1
> 496
0
+1/F
+1/L
-1/LLC2
+1/LLC2
-1/LLC2
+/- 0
STOP
GAIN ACCUMULATOR (18 BITS)
ACTUAL GAIN VALUE 9-BIT (AGV) [-3/+6 dB] 1 0
X
1
HSY
0
1
Y
0
AGV
UPDATE
FGV
X = system variable.
Y = AGV - FGV > GUDL .
GAIN VALUE 9-BIT
GUDL = gain update level (adjustable). VBLK = vertical blanking pulse. HSY = horizontal sync pulse. AGV = actual gain value. FGV = frozen gain value.
MHB728
Fig.8 Gain flow chart.
Confidential - NDA required
page 26
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
ANALOG INPUT
Pr eli ND m A ina req ry uir ed
ADC NO BLANKING ACTIVE 1 VBLK 0 <- CLAMP GAIN -> 1 HCL 0 1 HSY 0 1 CLL 0 0 SBOT 1 1 WIPE 0 + CLAMP - CLAMP NO CLAMP + GAIN - GAIN fast - GAIN slow + GAIN
MGC647
WIPE = white peak level (510). SBOT = sync bottom level (1).
CLL = clamp level [120 for CVBS, Y(C), S; 256 for C(Y), PB-PR; 32 for RGB, Y]. HSY = horizontal sync pulse. HCL = horizontal clamp pulse.
Fig.9 Clamp and gain flow chart.
Confidential - NDA required
page 27
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
8.1.2
CHROMINANCE AND LUMINANCE PROCESSING
CVBS-IN or Y-IN
Pr eli ND m A ina req ry uir ed
LDEL YCOMB Delay Comp. Subtractor Y CHR UV LuminancePeaking or Low Pass, Y/CVBS Quadrature Modulator Interpolation Low Pass 3 UV Y-Delay adjust. LUBW CVBS-IN or CHR-IN Quadrature Demodulator Low Pass 1 downsampling Adaptive Comb Filter DBRI[7:0] LUFI[3:0] DCON[7:0] CSTD[2:0] YDEL[2:0] SET_RAW DSAT[7:0] SET_VBI RAWG[7:0] RAWO[7:0] COLO UV Low Pass 2 Subcarrier Generation 2 Chr.-Incr. Delay LCBW[2:0]
CCOMB YCOMB LDEL SET_RAW BYPS SET_VBI HODG VEDG LDEL MEDG YCOMB CMBT VEDT
CHBW
Brightness Contrast Saturation Control Raw data Gain & Offset Control
Y-OUT / CVBS-OUT UV-OUT
SECAMProcessing
HREF-OUT
Subcarrier Generation 1 HUEC
Chr.-Incr.
DTO-reset
Phase Demod.
UV
SET_RAW SET_VBI
Subcarrier Increment Generation & Divider
Amplitude Detector
Chroma Gain Control
Burst Gate Accu Loop Filter
UVAdjustment
PAL-Dly-Line SECAMRecombination
SET_RAW DCVF SET_VBI
CDTO INCS CSTD[2:0]
FCTC ACGC CGAIN[6:0] IDEL[3:0]
CODE
SECS
RTCO
Colorstripe Burst Detector
COLSTR, TYPE3
fH/2 switch signal
Fig.10 Chrominance and luminance processing.
8.1.2.1
Chrominance path
The 9-bit CVBS or chrominance input signal is fed to the input of a quadrature demodulator, where it is multiplied by two time-multiplexed subcarrier signals from the subcarrier generation block 1 (0 and 90 phase relationship to the demodulator axis). The frequency is dependent on the chosen colour standard.
The time-multiplexed output signals of the multipliers are low-pass filtered (low-pass 1). Eight characteristics are programmable via LCWB3 to LCWB0 to achieve the desired bandwidth for the colour difference signals (PAL, NTSC) or the 0 and 90 FM signals (SECAM).
Confidential - NDA required
page 28
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Pr eli ND m A ina req ry uir ed
The low-pass filtered signals are fed to the adaptive comb filter block. The chrominance components are separated from the luminance via a two line vertical stage (four lines for PAL standards) and a decision logic and mixing stage between the filtered and the non-filtered output signals. The decision logic can be fine adjusted by the control signals HODG, VEDG, MEDG, VEDT and CMBT. This block is bypassed for SECAM signals. The comb filter logic can be enabled independently for the succeeding luminance and chrominance processing by YCOMB (subaddress 09H, bit 6) and/or CCOMB (subaddress 0EH, bit 0). It is always bypassed during VBI or raw data lines programmable by the LCRn registers (subaddresses 41H to 57H); see Section 8.4. The separated CB-CR components are further processed by a second filter stage (low-pass 2) to modify the chrominance bandwidth without influencing the luminance path. It's characteristic is controlled by CHBW (subaddress 10H, bit 3). For the complete transfer characteristic of low-passes 1 and 2 see Figs 11 and 12. The SECAM processing (bypassed for QAM standards) contains the following blocks: * Baseband `bell' filters to reconstruct the amplitude and phase equalized 0 and 90 FM signals * Phase demodulator and differentiator (FM-demodulation) * De-emphasis filter to compensate the pre-emphasized input signal, including frequency offset compensation (DB or DR white carrier values are subtracted from the signal, controlled by the SECAM switch signal). The succeeding chrominance gain control block amplifies or attenuates the CB-CR signal according to the required ITU 601/656 levels. It is controlled by the output signal from the amplitude detection circuit within the burst processing block. The burst processing block provides the feedback loop of the chrominance PLL and contains the following: * Burst gate accumulator * Colour identification and colour killer * Comparison nominal/actual burst amplitude (PAL/NTSC standards only) * Loop filter chrominance gain control (PAL/NTSC standards only) * PAL/SECAM sequence detection, H/2-switch generation. * Loop filter chrominance PLL (only active for PAL/NTSC standards) The increment generation circuit produces the Discrete Time Oscillator (DTO) increment for both subcarrier generation blocks. It contains a division by the increment of the line-locked clock generator to create a stable phase-locked sine signal under all conditions (e.g. for non-standard signals). The PAL delay line block eliminates crosstalk between the chrominance channels in accordance with the PAL standard requirements. For NTSC colour standards the delay line can be used as an additional vertical filter. If desired, it can be switched off by DCVF = 1. It is always disabled during VBI or raw data lines programmable by the LCRn registers (subaddresses 41H to 57H); see Section 8.4. The embedded line delay is also used for SECAM recombination (cross-over switches). The colorstripe burst detector detects partly or fully phase inverted burst according to the Macrovision standard. The protection level is reported by the status flags COLSTR and TYPE3. Confidential - NDA required page 29
Filename: SAA7115_Datasheet.fm
The chrominance low-pass 1 characteristic also influences the grade of cross-luminance reduction during horizontal colour transients (large chrominance bandwidth means strong suppression of cross-luminance). If the Y-comb filter is disabled by YCOMB = 0 the filter influences directly the width of the chrominance notch within the luminance path (a large chrominance bandwidth means wide chrominance notch resulting in a lower luminance bandwidth).
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Pr eli ND m A ina req ry uir ed
3 0
MHB533
V (dB)
-3 -6 -9
-12 -15 -18 -21 -24 -27 -30 -33 -36 -39 -42 -45 -48 -51 -54 -57 -60
(1) (2) (3) (4)
(1) LCBW[2:0] = 000. (2) LCBW[2:0] = 010. (3) LCBW[2:0] = 100. (4) LCBW[2:0] = 110.
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 f (MHz)
3 0
V (dB)
-3 -6 -9
-12 -15 -18 -21 -24 -27 -30 -33 -36 -39 -42 -45 -48 -51 -54 -57 -60
(5) (6) (7) (8)
(5) LCBW[2:0] = 001. (6) LCBW[2:0] = 011. (7) LCBW[2:0] = 101. (8) LCBW[2:0] = 111.
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 f (MHz)
Fig.11 Transfer characteristics of the chrominance low-pass at CHBW = 0.
Confidential - NDA required
page 30
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Pr eli ND m A ina req ry uir ed
3 0
MHB534
V (dB)
-3 -6 -9
-12 -15 -18 -21 -24 -27 -30 -33 -36 -39 -42 -45 -48 -51 -54 -57 -60
(1) (2) (3) (4)
(1) LCBW[2:0] = 000. (2) LCBW[2:0] = 010. (3) LCBW[2:0] = 100. (4) LCBW[2:0] = 110.
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 f (MHz)
3 0
V (dB)
-3 -6 -9
-12 -15 -18 -21 -24 -27 -30 -33 -36 -39 -42 -45 -48 -51 -54 -57 -60
(5) (6) (7) (8)
(5) LCBW[2:0] = 001. (6) LCBW[2:0] = 011. (7) LCBW[2:0] = 101. (8) LCBW[2:0] = 111.
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 f (MHz)
Fig.12 Transfer characteristics of the chrominance low-pass at CHBW = 1.
Confidential - NDA required
page 31
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
8.1.2.2
Luminance path
Pr eli ND m A ina req ry uir ed
The comb filtered CB-CR components are interpolated (upsampled) by the low-pass 3 block. It's characteristic is controlled by LUBW (subaddress 09H, bit 4) to modify the width of the chrominance `notch' without influencing the chrominance path. The programmable frequency characteristics available, in conjunction with the LCBW2 to LCBW0 settings, can be seen in Figs 13 to 16. It should be noted that these frequency curves are only valid for Y-comb disabled filter mode (YCOMB = 0). In comb filter mode the frequency response is flat. The centre frequency of the notch is automatically adapted to the chosen colour standard. The interpolated CB-CR samples are multiplied by two time-multiplexed subcarrier signals from the subcarrier generation block 2. This second DTO is locked to the first subcarrier generator by an increment delay circuit matched to the processing delay, which is different for PAL and NTSC standards according to the chosen comb filter algorithm. The two modulated signals are finally added to build the remodulated chrominance signal. The frequency characteristic of the separated luminance signal can be further modified by the succeeding luminance filter block. It can be configured as peaking (resolution enhancement) or low-pass block by LUFI3 to LUFI0 (subaddress 09H, bits 3 to 0). The 16 resulting frequency characteristics can be seen in Fig.17. The LUFI3 to LUFI0 settings can be used as a user programmable sharpness control. The luminance filter block also contains the adjustable Y-delay part; programmable by YDEL2 to YDEL0 (subaddress 11H, bits 2 to 0). Confidential - NDA required page 32
Filename: SAA7115_Datasheet.fm
The rejection of the chrominance components within the 9-bit CVBS or Y input signal is achieved by subtracting the remodulated chrominance signal from the CVBS input.
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Pr eli ND m A ina req ry uir ed
3 0
MHB535
V (dB)
-3 -6 -9
-12 -15 -18 -21 -24 -27 -30 -33 -36 -39 -42 -45 -48 -51 -54 -57 -60
(1) (2) (3) (4)
(1) LCBW[2:0] = 000. (2) LCBW[2:0] = 010. (3) LCBW[2:0] = 100. (4) LCBW[2:0] = 110.
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 f (MHz)
3 0
V (dB)
-3 -6 -9
-12 -15 -18 -21 -24 -27 -30 -33 -36 -39 -42 -45 -48 -51 -54 -57 -60
(5) (6) (7) (8)
(5) LCBW[2:0] = 001. (6) LCBW[2:0] = 011. (7) LCBW[2:0] = 101. (8) LCBW[2:0] = 111.
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 f (MHz)
Fig.13 Transfer characteristics of the luminance notch filter in 3.58 MHz mode (Y-comb filter disabled) at LUBW = 0.
Confidential - NDA required
page 33
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Pr eli ND m A ina req ry uir ed
3 0
MHB536
V (dB)
-3 -6 -9
-12 -15 -18 -21 -24 -27 -30 -33 -36 -39 -42 -45 -48 -51 -54 -57 -60
(1) (2) (3) (4)
(1) LCBW[2:0] = 000 (2) LCBW[2:0] = 010 (3) LCBW[2:0] = 100 (4) LCBW[2:0] = 110
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 f (MHz)
3 0
V (dB)
-3 -6 -9
-12 -15 -18 -21 -24 -27 -30 -33 -36 -39 -42 -45 -48 -51 -54 -57 -60
(5) (6) (7) (8)
(5) LCBW[2:0] = 001 (6) LCBW[2:0] = 011 (7) LCBW[2:0] = 101 (8) LCBW[2:0] = 111
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 f (MHz)
Fig.14 Transfer characteristics of the luminance notch filter in 3.58 MHz mode (Y-comb filter disabled) at LUBW = 1.
Confidential - NDA required
page 34
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Pr eli ND m A ina req ry uir ed
3 0
MHB537
V (dB)
-3 -6 -9
-12 -15 -18 -21 -24 -27 -30 -33 -36 -39 -42 -45 -48 -51 -54 -57 -60
(1) (2) (3) (4)
(1) LCBW[2:0] = 000. (2) LCBW[2:0] = 010. (3) LCBW[2:0] = 100. (4) LCBW[2:0] = 110.
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 f (MHz)
3 0
V (dB)
-3 -6 -9
-12 -15 -18 -21 -24 -27 -30 -33 -36 -39 -42 -45 -48 -51 -54 -57 -60
(5) (6) (7) (8)
(5) LCBW[2:0] = 001. (6) LCBW[2:0] = 011. (7) LCBW[2:0] = 101. (8) LCBW[2:0] = 111.
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 f (MHz)
Fig.15 Transfer characteristics of the luminance notch filter in 4.43 MHz mode (Y-comb filter disabled) at LUBW = 0.
Confidential - NDA required
page 35
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Pr eli ND m A ina req ry uir ed
3 0
MHB538
V (dB)
-3 -6 -9
-12 -15 -18 -21 -24 -27 -30 -33 -36 -39 -42 -45 -48 -51 -54 -57 -60
(1) (2) (3) (4)
(1) LCBW[2:0] = 000. (2) LCBW[2:0] = 010. (3) LCBW[2:0] = 100. (4) LCBW[2:0] = 110.
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 f (MHz)
3 0
V (dB)
-3 -6 -9
-12 -15 -18 -21 -24 -27 -30 -33 -36 -39 -42 -45 -48 -51 -54 -57 -60
(5) (6) (7) (8)
(5) LCBW[2:0] = 001. (6) LCBW[2:0] = 011. (7) LCBW[2:0] = 101. (8) LCBW[2:0] = 111.
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 f (MHz)
Fig.16 Transfer characteristics of the luminance notch filter in 4.43 MHz mode (Y-comb filter disabled) at LUBW = 1.
Confidential - NDA required
page 36
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Pr eli ND m A ina req ry uir ed
MHB539
9 8 7 6 5 4 3 2 1 0
V (dB)
(1) (2) (3) (4) (5) (6) (7) (8)
(1) LUFI[3:0] = 0001. (2) LUFI[3:0] = 0010. (3) LUFI[3:0] = 0011. (4) LUFI[3:0] = 0100. (5) LUFI[3:0] = 0101. (6) LUFI[3:0] = 0110. (7) LUFI[3:0] = 0111. (8) LUFI[3:0] = 0000.
-1
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0 5.5 f (MHz)
6.0
3 V (dB) 0 -3 -6 -9
-12 -15 -18 -21 -24 -27 -30 -33 -36 -39
(9) (10) (11) (12) (13) (14) (15) (16)
(9) LUFI[3:0] = 1000. (10) LUFI[3:0] = 1001. (11) LUFI[3:0] = 1010. (12) LUFI[3:0] = 1011. (13) LUFI[3:0] = 1100. (14) LUFI[3:0] = 1101. (15) LUFI[3:0] = 1110. (16) LUFI[3:0] = 1111.
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0 5.5 f (MHz)
6.0
Fig.17 Transfer characteristics of the luminance peaking/low-pass filter (sharpness).
Confidential - NDA required
page 37
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
8.1.2.3
Brightness Contrast Saturation (BCS) control and decoder output levels
The resulting Y (CVBS) and CB-CR signals are fed to the BCS block, which contains the following functions:
Pr eli ND m A ina req ry uir ed
* Luminance contrast and brightness control by DCON7 to DCON0 and DBRI7 to DBRI0 * Raw data (CVBS) gain and offset adjustment by RAWG7 to RAWG0 and RAWO7 to RAWO0 * Limiting Y-CB-CR or CVBS to the values 1 (minimum) and 254 (maximum) to fulfil "ITU Recommendation 601/656".
+255 handbook, full pagewidth +235 white +255 +240 +212 blue 100% blue 75% +255 +240 red 100% red 75% +212 +128 LUMINANCE 100% +128 colourless +128 colourless CB-COMPONENT CR-COMPONENT +44 +16 yellow 75% +44 +16 cyan 75% +16 black yellow 100% cyan 100%
MHB730
* Chrominance saturation control by DSAT7 to DSAT0
0
0
0
a. Y output range.
b. CB output range.
c. CR output range.
"ITU Recommendation 601/656" digital levels with default BCS (decoder) settings DCON[7:0] = 44H, DBRI[7:0] = 80H and DSAT[7:0] = 40H. Equations for modification to the Y-CB-CR levels via BCS control I2C-bus bytes DBRI, DCON and DSAT.
Luminance: DCON Y OUT = Int ---------------- x ( Y - 128 ) + DBRI 68
DSAT Chrominance: ( C R C B ) OUT = Int --------------- x ( C R, C B - 128 ) + 128 64
It should be noted that the resulting levels are limited to 1 to 254 in accordance with "ITU Recommendation 601/656".
Fig.18 Y-CB-CR range for scaler input and X-port output.
Confidential - NDA required
page 38
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
+255 +209 white
+255 +199 white
Pr eli ND m A ina req ry uir ed
LUMINANCE LUMINANCE +71 +60 black black shoulder +60 black shoulder = black SYNC SYNC 1 sync bottom 1 sync bottom
MGD700
a. Sources containing 7.5 IRE black level offset (e.g. NTSC M).
b. Sources not containing black level offset.
CVBS levels with default settings RAWG[7:0] = 64 and RAWO[7:0] = 128. Equation for modification of the raw data levels via bytes RAWG and RAWO: RAWG CVBS OUT = Int ----------------- x ( CVBS nom - 128 ) + RAWO 64
It should be noted that the resulting levels are limited to 1 to 254 in accordance with "ITU Recommendation 601/656".
Fig.19 CVBS (raw data) range for scaler input, data slicer and X-port output.
8.1.3
SYNCHRONIZATION
The prefiltered luminance signal is fed to the synchronization stage. Its bandwidth is further reduced to 1 MHz in a low-pass filter. The sync pulses are sliced and fed to the phase detectors where they are compared with the sub-divided clock frequency. The resulting output signal is applied to the loop filter to accumulate all phase deviations. Internal signals (e.g. HCL and HSY) are generated in accordance with analog front-end requirements. The loop filter signal drives an oscillator to generate the line frequency control signal LFCO; see Fig.20. The detection of `pseudo syncs' as part of the macrovision copy protection standard is also achieved within the synchronization circuit. The result is reported as flag COPRO within the decoder status byte at subaddress 1FH.
8.1.4
CLOCK GENERATION CIRCUIT
The internal CGC generates all clock signals required for the video input processor.
The internal signal LFCO is a digital-to-analog converted signal provided by the horizontal PLL. It is the multiple of the line frequency: 6.75 MHz = 429 x fH (50 Hz), or 6.75 MHz = 432 x fH (60 Hz).
Confidential - NDA required
page 39
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
The LFCO signal is multiplied by a factor of 2 and 4 in the internal PLL circuit (including phase detector, loop filtering, VCO and frequency divider) to obtain the output clock signals. The rectangular output clocks have a 50% duty factor.
Pr eli ND m A ina req ry uir ed
CLOCK FREQUENCY (MHz) 24.576 OR 32.110 27 13.5 XTALO LLC LLC2 LLC4 (INTERNAL) LLC8 (VIRTUAL) 6.75 3.375
LFCO BAND PASS FC = LLC/4 ZERO CROSS DETECTION PHASE DETECTION LOOP FILTER OSCILLATOR LLC DIVIDER 1/2 DIVIDER 1/2 LLC2
MHB330
Table 5
Decoder clock frequencies
Fig.20 Block diagram of the clock generation circuit.
Confidential - NDA required
page 40
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
8.1.5
POWER-ON RESET AND CHIP ENABLE (CE) INPUT
Pr eli ND m A ina req ry uir ed
It is possible to force a reset by pulling the Chip Enable pin (CE) to ground. After the rising edge of CE and sufficient power supply voltage, the outputs LLC, LLC2 and SDA return from 3-state to active, while the other signals have to be activated via programming. However, some external devices require an active clock during reset to avoid hang up. For these applications it is possible to activate both the I-port and/or the X-port outputs by pulling the ITRI- and/or XTRI inputs to logic 1 by an external pull up resistor (4.7 k). In detail: Pulling ITRI to 1 activates the outputs ICLK, IPD[7:0], IDQ, IGPH, IGPV, IGP0 and IGP1; pulling XTRI to 1 activates the outputs XCLK, XPD[7:0], XDQ, XRH and XRV. During reset both ICLK and XCLCK deliver the LLC-clock (27 MHz) generated by the internal decoder PLL. If ITRI and/or XTRI are not connected, an internal pull up resistor takes care that these pins remain in 3-state. In any case it is possible to force these ports to 3-state by setting XPE[1:0] and/or IPE[1:0] to 00. Confidential - NDA required page 41
Filename: SAA7115_Datasheet.fm
A missing clock, insufficient digital or analog VDDA0 supply voltages (below 2.8 V) will start the reset sequence; all outputs are forced to 3-state (see Fig.21). The indicator output RES is LOW for approximately 128 LLC after the internal reset and can be applied to reset other circuits of the digital TV system.
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Pr eli ND m A ina req ry uir ed
POC V DDA ANALOG POC V DDD DIGITAL CLOCK PLL LLC CE POC LOGIC POC DELAY RES RESINT CLK0 CE XTALO LLCINT RESINT LLC RES (internal reset) some ms 20 to 200 s PLL-delay 896 LCC digital delay 128 LCC
MHB331
<1 ms
POC = Power-on Control. CE = chip enable input. XTALO = crystal oscillator output.
LLCINT = internal system clock. RESINT = internal reset. LLC = line-locked clock output, occurs also on pins XCLK and/or ICLK if enabled via pull up resistor on XTRI and/or ITRI. RES = reset output.
Fig.21 Power-on control circuit.
Confidential - NDA required
page 42
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
8.2
Output Formatter
Pr eli ND m A ina req ry uir ed
This control circuitry requests decoded video data (Y-CB-CR 4 : 2 : 2) or raw data from the combfilter decoder output to be provided to expansion port (X-Port) output, to the scaler input and to the VBI data slicer input. This data request is user controlled by the line control registers LCR2 to LCR24 (see also Chapter 16; subaddresses 41H to 57H). Each of the registers LCR2 to LCR23 defines a data type to be decoded in the associated line; i.e.: the VBI data type can be set independently for each of the lines. Therefore LCR2 to LCR23 refer to line numbers. The selection in LCR24 values is valid for the rest of the corresponding field. The upper nibble of each of the 23 LCR registers contains the value for field 1 (odd), the lower nibble for field 2 (even). The relationship between LCR values and line numbers can be adjusted via VOFF8 to VOFF0, located in subaddresses 5BH (bit 4) and 5AH (bits 7 to 0), FOFF subaddress 5BH (bit D7) and VEP subaddress 5BH (bit D5). The recommended values are VOFF[8:0] = 03H for 50 Hz sources (with FOFF = 0) and VOFF[8:0] = 06H for 60 Hz sources (with FOFF = 1), to accommodate line number conventions as used for PAL, SECAM and NTSC standards; see Tables 7 to 10. Note: The line counting scheme for 60 Hz standards, with VOFF = 0x06, as mentioned in Fig.23, table 7 and table 8, leads the VBI slicer to take the old field ID as reference for it's field processing. For consistent ID interpretation the VOFF value need to be set to 0x03. Table 6 Data formats at decoder output Data type 60Hz / 525 Lines VBI Data Standards DESCRIPTION 50Hz / 625 Lines VBI Data Standards DESCRIPTION No. 0 binary 0000 Decoder output data format raw data raw data raw data Decoder output data format raw data do not acquire (active video) NABTS Y-CB-CR 4:2:2 do not acquire (active video) Y-CB-CR 4:2:2 raw data 1 2 3 4 5 6 7 8 9 0001 0010 0011 0100 0101 0110 0111 1000 1001 US Teletext (WST525) Euro Teletext (WST625) Euro Teletext with progammable Framing Code reserved Moji reserved raw data raw data US Closed Caption (CC525) CGMS (WSS525) raw data raw data Euro Closed Caption (CC625) Euro Wide Screen Signalling (WSS625) VITC625 VPS VITC525 raw data raw data Gemstar2x Gemstar1x reserved raw data raw data raw data reserved reserved raw data raw data reserved raw data raw data reserved reserved 10 11 12 13 14 15 1010 1011 1100 1101 1110 1111 Open1 (5 MHz) reserved Open1 (5 MHz) Open2 (5,7272 MHz) Open2 (5,7272 MHz) reserved raw data reserved reserved raw data do not acquire (RAW) do not acquire (Test) do not acquire (RAW) do not acquire (Test) reserved reserved do not acquire (active video) Y-CB-CR 4:2:2 do not acquire (active video) Y-CB-CR 4:2:2 The adjustment of the slicer processing, the adjustment of video output data via the expansion port (X-Port) and the adjustment of video data transferred to the scaler relative to the input signal source is defined by the programming Confidential - NDA required page 43
Filename: SAA7115_Datasheet.fm
The Output Formatter of the decoder part contains the ITU 656 8 bit / 10 bit formatter for the expansion port (X-Port) data output (XPD[7:0], XRH, XRV) including the selection of the reference signals for the RT port (RTCO, RTS0 and RTS1) and the expansion port (XRH, XRV and XDQ) (for a detailed description see Section 9.4.1) as well as the control circuitry for the signals needed for the internal paths to the scaler and data slicer part.
Last edited by H. Lambers
registers 59h to 5BH, There are programmable offsets in the horizontal and vertical direction available: parameters HOFF[10:0] 5BH[2:0] 59H[7:0], VOFF[8:0] 5BH[4] 5AH[7:0], FOFF[5BH[7]] and VEP[5BH[5]]). I.e. these control registers are defining the decoder data output format - active video, raw samples (optionally a test line), which is delivered from combfilter video decoder output to the expansion port output, the scaler and the VBI Data Slicer.
Filename: SAA7115_Datasheet.fm
Confidential - NDA required page 44
Table 7 Relationship of LCR to line numbers in 525 lines/60 Hz systems (part 1) Vertical line offset, VOFF[8:0] = 06H,resp. 03H (subaddresses 5BH[4] and 5AH[7:0]); horizontal pixel offset, HOFF[10:0] = 347H (subaddresses 5BH[2:0] and 59H[7:0]); FOFF = 1 (subaddress 5BH[7]), VEP = 0 (subaddress 5BH[5]) LINE NUMBER (1ST FIELD) 521 522 523 524 525 1 2 3 4 5 6 7 8 9 ACTIVE VIDEO 261 EQUALIZATION PULSES 264 265 266 SERRATION PULSES 268 EQUALIZATION PULSES 270 271 272
LINE NUMBER (2ND FIELD) LCR VOFF = 06H
LCR VOFF = 03H
Table 8 Relationship of LCR to line numbers in 525 lines/60 Hz systems (part 2) Vertical line offset, VOFF[8:0] = 06H,resp. 03H (subaddresses 5BH[4] and 5AH[7:0]); horizontal pixel offset, HOFF[10:0] = 347H (subaddresses 5BH[2:0] and 59H[7:0]); FOFF = 1 (subaddress 5BH[7]), VEP = 0 (subaddress 5BH[5]) LINE NUMBER (1ST FIELD) 10 11 12 18 19 20 21 22 23 24 25 26 27 28 NOMINAL VBI-LINES F1 281 ACTIVE VIDEO 288
LINE NUMBER (2ND FIELD) LCR VOFF = 06H LCR VOFF = 03H Last edited by H. Lambers
yd re ar ni iu im eq lr e rA P D N
259 260 262 263 267 269 ACTIVE VIDEO EQUALIZATION PULSES 2 SERRATION PULSES 4 5 EQUALIZATION PULSES 7 8 24 3 6 3 9 24 2 4 5 6 Datasheet SAA7115 CVIP2 273 274 275 282 283 284 285 286 287 289 290 291 NOMINAL VBI-LINES F2 18 ACTIVE VIDEO 13 7 14 8 15 9 19 20 21 22 23 24 Version: Date: 15 16 17 18 19 20 21 22 23 24 10/23/01 0.67
CS-PD Hamburg
Philips Semiconductors
Table 9 Relationship of LCR to line numbers in 625 lines/50 Hz systems (part 1) Vertical line offset, VOFF[8:0] = 03H (subaddresses 5BH[4] and 5AH[7:0]); horizontal pixel offset, HOFF[10:0] = 347H (subaddresses 5BH[2:0] and 59H[7:0]); FOFF = 0 (subaddress 5BH[7]), VEP = 0 (subaddress 5BH[5]) LINE NUMBER (1ST FIELD) 621 622 623 624 625 1 2 3 4 5 ACTIVE VIDEO 310 EQUALIZATION PULSES 312 313 SERRATION PULSES 315 EQUALIZATION PULSES 317 318
Filename: SAA7115_Datasheet.fm
Confidential - NDA required page 45
LINE NUMBER (2ND FIELD) LCR
Table 10 Relationship of LCR to line numbers in 625 lines/50 Hz systems (part 2) Vertical line offset, VOFF[8:0] = 03H (subaddresses 5BH[4] and 5AH[7:0]); horizontal pixel offset, HOFF[10:0] = 347H (subaddresses 5BH[2:0] and 59H[7:0]); FOFF = 0 (subaddress 5BH[7]), VEP = 0 (subaddress 5BH[5]) LINE NUMBER (1ST FIELD) 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 NOMINAL VBI-LINES F1 326 327 328 329
LINE NUMBER (2ND FIELD) LCR
The relationship of these programming values to the input signal and the recommended values is outlined in table 7 to table 10.
yd re ar ni iu im eq lr e rA P D N
309 311 314 316 ACTIVE VIDEO EQUALIZATION PULSES 24 SERRATION PULSES 2 EQUALIZATION PULSES 3 4 5 25 Datasheet SAA7115 ACTIVE VIDEO CVIP2 319 320 321 322 323 324 325 330 331 332 333 334 335 336 337 338 NOMINAL VBI-LINES F2 13 14 15 ACTIVE VIDEO 24 6 7 8 9 10 11 12 16 17 18 19 20 21 22 23 Version: Date: 10/23/01 0.67
CS-PD Hamburg
Philips Semiconductors
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Pr eli ND m A ina req ry uir ed
CVBS HREF F_ITU656 V123 (1) VSTO [8:0] = 134H VGATE FID
ITU counting single field counting
622 309
623 310
624 311
625 312
1 1
2 2
3 3
4 4
5 5
6 6
7 7
... ...
22 22
23 23
(a) 1st field
VSTA [8:0] = 15H
ITU counting single field counting CVBS
309 309
310 310
311 311
312 312
313 313
314 1
315 2
316 3
317 4
318 5
319 6
... ...
335 22
336 23
HREF
F_ITU656 V123 (1)
VSTO [8:0] = 134H
VGATE
FID
(b) 2nd field
VSTA [8:0] = 15H
MHB540
(1) The inactive going edge of the V123 signal indicates whether the field is odd or even. If HREF is active during the falling edge of V123, the field is ODD (field 1). If HREF is inactive during the falling edge of V123, the field is EVEN. The specific position of the slope is dependent on the internal processing delay and may change a few clock cycles from version to version. The control signals listed above are available on pins RTS0, RTS1, XRH and XRV according to the following table:
NAME
RTS0 X -
RTS1 X -
XRH X - - - -
XRV - X X - -
HREF
F_ITU656 VGATE FID
V123
X
X
X X
X X
For further information see Section 16.2: Tables 69, 70 and 71.
Fig.22 Vertical timing diagram for 50 Hz/625 line systems.
Confidential - NDA required
page 46
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Pr eli ND m A ina req ry uir ed
CVBS HREF F_ITU656 V123 (1) VSTO [8:0] = 101H VGATE FID
ITU counting single field counting
525 262
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
... ...
21 21
22 22
(a) 1st field
VSTA [8:0] = 011H
ITU counting single field counting CVBS
262 262
263 263
264 1
265 2
266 3
267 4
268 5
269 6
270 7
271 8
272 9
... ...
284 21
285 22
HREF
F_ITU656 V123 (1)
VSTO [8:0] = 101H
VGATE
FID
(b) 2nd field
VSTA [8:0] = 011H
MHB541
(1) The inactive going edge of the V123 signal indicates whether the field is odd or even. If HREF is active during the falling edge of V123, the field is ODD (field 1). If HREF is inactive during the falling edge of V123, the field is EVEN. The specific position of the slope is dependent on the internal processing delay and may change a few clock cycles from version to version. The control signals listed above are available on pins RTS0, RTS1, XRH and XRV according to the following table:
NAME
RTS0 X -
RTS1 X -
XRH X - - - -
XRV - X X - -
HREF
F_ITU656 VGATE FID
V123
X
X
X X
X X
For further information see Section 16.2: Tables 69, 70 and 71.
Fig.23 Vertical timing diagram for 60 Hz/525 line systems.
Confidential - NDA required
page 47
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Pr eli ND m A ina req ry uir ed
CVBS input burst processing delay ADC to expansion port: 140 x 1/LLC expansion port data output sync clipped HREF (50 Hz) 720 x 2/LLC 12 x 2/LLC 144 x 2/LLC CREF CREF2 5 x 2/LLC HS (50 Hz) 2 x 2/LLC programming range 108 (step size: 8/LLC) 0 -107 HREF (60 Hz) 16 x 2/LLC 720 x 2/LLC 138 x 2/LLC CREF CREF2 1 x 2/LLC HS (60 Hz) 2 x 2/LLC programming range (step size: 8/LLC) 107 0 -106
MHB542
The signals HREF, HS, CREF2 and CREF are available on pins RTS0 and/or RTS1. Their polarity can be inverted via RTP0 and/or RTP1 (see Section 16.2: Tables 69, 70 and 71) The signals HREF and HS are available on pin XRH (see Section 16.2 Table 72).
Fig.24 Horizontal timing diagram (50/60 Hz).
Confidential - NDA required
page 48
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
8.3
Scaler
The high performance video scaler in the SAA7115 has the following major blocks:
Pr eli ND m A ina req ry uir ed
* Prescaler, for horizontal down-scaling by an integer factor, combined with appropriate band limiting filters, especially anti-aliasing for CIF format * Brightness, saturation, contrast control to adjust scale dependent amplification * Line buffer, with asynchronous read and write, to support vertical up-scaling (e.g. for videophone application, converting 240 into 288 lines, Y-CB-CR 4 : 2 : 2) * Vertical scaling, with phase accurate Linear Phase Interpolation (LPI) for zoom and downscale, or phase accurate Accumulation Mode (ACM) for large downscaling ratios and better alias suppression * Variable Phase Delay (VPD), operates as horizontal phase accurate interpolation for arbitrary non-integer scaling ratios, supporting conversion between square and rectangular pixel sampling * Output formatter for scaled Y-CB-CR 4 : 2 : 2, Y-CB-CR 4 : 1 : 1 and Y only (format also for raw data) * FIFO, 32-bit wide, with 64 pixel capacity in Y-CB-CR formats * Output interface, 8 or 16-bit (only if extended by H-port) data pins wide, synchronous or asynchronous operation, with stream events on discrete pins, or coded in the data stream. The overall H and V zooming (HV_zoom) is restricted by the input/output data rate relationships. With a safety margin of 2% for running in and running out, T_input_field - T_v_blanking the maximum HV_zoom is equal to: 0.98 x ------------------------------------------------------------------------------------------------------------------------------------in_pixel x in_lines x out_cycle_per_pix x T_out_clk For example: 1. Input from decoder: 50 Hz, 720 pixel, 288 lines, 16-bit data at 13.5 MHz data rate, 1 cycle per pixel; output: 8-bit data at 27 MHz, 2 cycles per pixel; 20 ms - 24 x 64 s the maximum HV_zoom is about: 0.98 x -------------------------------------------------------- = 1.18 720 x 288 x 2 x 37 ns 2. Input from X-port: 60 Hz, 720 pixel, 240 lines, 8-bit data at 27 MHz data rate (ITU 656), 2 cycles per pixel; output via I + H-port: 16-bit data at 27 MHz clock, 1 cycle per pixel; 16.666 ms - 22 x 64 s the maximum HV_zoom is about: 0.98 x ------------------------------------------------------------- = 2.34 720 x 240 x 1 x 37 ns The data flow in the scaler is controlled by internal data valid and data request flags (internal handshake signalling) between the sub-blocks, as the scaling process itself is discontinuous and dynamical. Therefore the entire scaler acts as a pipeline buffer. Depending on the actually programmed scaling parameters the effective buffer can exceed to an entire line. This allows vertical upscaling, more flexible video stream timing at the image port, discontinuous transfers and handshake. The access/bandwidth requirements to the VGA frame buffer are reduced significantly. The video scaler receives its input signal from the video decoder or from the expansion port (X-port). It gets 16-bit Y-CB-CR 4 : 2 : 2 input data at a continuous rate of 13.5 MHz from the decoder. Discontinuous data stream can be accepted from the expansion port (X-port), normally 8-bit wide ITU 656 like Y-CB-CR data, accompanied by a pixel qualifier on XDQ. The input data stream is sorted into two data paths, one for luminance (or raw samples) and one for time multiplexed chrominance CB and CR samples. An Y-CB-CR 4 : 1 : 1 input format from the X-port is converted to 4 : 2 : 2 for the horizontal prescaling and vertical filter scaling operation. The scaler operation is defined by two programming pages A and B, representing two different tasks, that can be applied field alternating or to define two regions in a field (e.g. with different scaling range, factors and signal source during odd and even fields). Each programming page contains control: Confidential - NDA required page 49
Filename: SAA7115_Datasheet.fm
* Acquisition control (horizontal and vertical timer) and task handling (the region/field/frame based processing)
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg * For signal source selection and formats * For task handling and trigger conditions * For input and output acquisition window definition * For H-prescaler, V-scaler and H-phase scaling.
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Pr eli ND m A ina req ry uir ed
Raw VBI-data is handled as specific input format and needs its own programming page (equals own task). In VBI pass through operation the processing of prescaler and vertical scaling has to be set to no-processing, however, the horizontal fine scaling VPD can be activated. Upscaling (oversampling, zooming), free of frequency folding, up to a factor of 3.5 can be achieved, as required by some software data slicing algorithms. These raw samples are transported through the image port as valid data and can be output as Y only format. Also this Y only lines can be framed by SAV and EAV codes. 8.3.1 ACQUISITION CONTROL AND TASK HANDLING (SUBADDRESSES 80H, 90H, 91H, 94H TO 9FH AND C4H TO CFH) The acquisition control receives horizontal and vertical synchronization signals from the decoder section or from the X-port. The acquisition window is generated via pixel and line counters at the appropriate places in the data path. From X-port only qualified pixels and lines (lines with qualified pixel) are counted. The acquisition window parameters are as follows: * Signal source selection regarding input video stream and formats from the decoder, or from X-port (programming bits SCSRC[1:0] 91H[5:4] and FSC[2:0] 91H[2:0]) Remark: The input of raw VBI-data from the internal decoder need to be controlled via the decoder output formatter and the LCR registers (see Section 8.2) * Vertical offset defined in lines of the video source, parameter YO[11:0] 99H[3:0] 98H[7:0] * Vertical length defined in lines of the video source, parameter YS[11:0] 9BH[3:0] 9AH[7:0] * Vertical length defined in number of target lines, as a result of vertical scaling, parameter YD[11:0] 9FH[3:0] 9EH[7:0] * Horizontal offset defined in number of pixels of the video source, parameter XO[11:0] 95H[3:0] 94H[7:0] * Horizontal length defined in number of pixels of the video source, parameter XS[11:0] 97H[3:0] 96H[7:0] * Horizontal destination size, defined in target pixels after fine scaling, parameter XD[11:0] 9DH[3:0] 9CH[7:0]. The source start offset (XO11 to XO0 and YO11 to YO0) opens the acquisition window, and the target size (XD11 to XD0, YD11 to YD0) closes the window, but the window is cut vertically, if there are less output lines than expected. The trigger events for the pixel and line counts are the horizontal and vertical reference edges as defined in subaddress 92H. The task handling is controlled by subaddress 80H and 90H (see Section 8.3.1.2). To support instable non standard input signals, different operational modes are implemented (bits CMOD and FMOD).
8.3.1.1
Input field processing
The scaler directly gets a corresponding field ID information from the SAA7115 decoder path. If switched to the X-port, the trigger event for the field sequence detection from external signals (X-port) are defined in subaddress 92H. From the X-port the state of the scalers H-reference signal at the time of the V-reference edge is taken as field sequence identifier FID. For example, if the falling edge of the XRV input signal is the reference and the state of XRH input is logic 0 at that time, the detected field ID is logic 0.
The bits XFDV[92H[7]] and XFDH[92H[6]] define the detection event and state of the flag from the X-port. For the default setting of XFDV and XFDH at `00' the state of the H-input at the falling edge of the V-input is taken.
Confidential - NDA required
page 50
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
The FID flag is used to determine whether the first or second field of a frame is going to be processed within the scaler and it is used as trigger condition for the task handling (see bits STRC[1:0] 90H[1:0]).
Pr eli ND m A ina req ry uir ed
As the V-sync from the decoder path has a half line timing (due to the interlaced video signal), but the scaler processing only knows about full lines, during 1st fields from the decoder the line count of the scaler possibly shifts by one line, compared to the 2nd field. This can be compensated for by switching the V-trigger event, as defined by XDV0, to the opposite V-sync edge or by using the vertical scalers phase offsets. The vertical timing of the decoder can be seen in Figs 22 and 23. As the H and V reference events inside the ITU 656 data stream (from X-port) and the real-time reference signals from the decoder path are processed differently, the trigger events for the input acquisition also have to be programmed differently. Table 11 Processing trigger and start DESCRIPTION XDV1 92H[5] XDV0 92H[4] XDH 92H[2] Internal decoder: The processing triggers at the reference edge of the V123 pulse (see Figs 22 (50 Hz) and 23 (60 Hz)), and starts earliest with the rising edge of the decoder HREF at line number: falling edge: 4/7 (50/60 Hz, 1st field), resp. 3/6 (50/60 Hz, 2nd field) (decoder count) 0 1 0 rising edge: 2/5 (50/60 Hz, 1st field), resp. 2/5 (50/60 Hz, 2nd field) (decoder count) 0 0 0 External ITU 656 stream: The processing starts earliest with SAV at line number 23 (50 Hz system), respectively line 20 (60 Hz system) (according to ITU 656 count) 0 0 0
According to ITU 656, when FID is at logic 0 means first field of a frame. To ease the application, the polarities of the detection results on the X-port signals and the internal decoder ID can be changed via XFDH.
8.3.1.2
Task handling
The task handler controls the switching between the two programming register sets. The main function is controlled by subaddresses 90H and C0H. The operational modes of the task handler are controlled by the bits CMOD[80H[7]] and FMOD[9bH[7]]. A task is enabled via the global control bits TEA[80H[4]] and TEB[80H[5]]. The handler is then triggered by events, which can be defined for each register set.
In case of a programming error the task handling and the complete scaler can be reset to the initial states by setting the software reset bit SWRST[88H[5]] to logic 0. Especially if the programming registers, related acquisition window and scale are reprogrammed while a task is active, a software reset MUST be performed after programming. Contrary to the disabling/enabling of a task, which is evaluated at the end of a running task, when SWRST is at logic 0 it sets the internal state machines directly to their idle states.
The basic operation of the task handler is strongly orientated on the window definitions, which means, if a starting point (in terms of XO and YO values) is missed, or the window definition (especially in terms of the (YO + YS) value) is larger than the input field, the operation is inhibited or incoming video fields are skipped. To better support non standard input signals and signal sources with varying field lengths (like a VCR in fast forward/rewind mode), there are now some different operational modes implemented for the task handling. Field Mode (bit FMOD [9BH[7]]) This is a task specific bit (for flexibility reasons), but normally both tasks should be programmed to the same value. If the FMOD bit is set to `1' the YO and YS parameters change the meaning. YO defines the start line and YS the end line (instead of the window length) for the scalers processing window. Additionally the trigger conditions of the task handler are changed.
Confidential - NDA required
page 51
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Pr eli ND m A ina req ry uir ed
Continuous Mode (bit CMOD [80H[7]]) Applications, which do not use the vertical scaling, may take advantage from the `continuous processing mode'. In this mode a task is started via the SWRST bit and the task enable bits TEA or TEB. The horizontal window definition keeps it's meaning, but YO and YS are ignored. The vertical blanking scheme is defined by the selected V-sync (see bits V_EAV). Once started, the vertical retrigger pulses from the input are ignored and SWRST at `0' is needed to stop the task processing. Start, Repeat and Skip The start condition for the handler is defined by bits STRC[1:0] 90H[1:0] and means: start immediately, wait for next V-sync, next FID at logic 0 or next FID at logic 1. The FID is evaluated, if the vertical and horizontal offsets are reached. When RPTSK[90H[2]] is at logic 1 the actual running task is repeated (under the defined trigger conditions), before handing control over to the alternate task. To support field rate reduction, the handler is also enabled to skip fields (bits FSKP[2:0] 90H[5:3]) before executing the task. A TOGGLE flag is generated (used for the correct output field processing), which changes state at the beginning of a task, every time a task is activated. Examples are given in Section 8.3.1.3. Remarks: * To activate a task the start condition must be fulfilled and, in case of FMOD = 0, the acquisition window offsets must be reached. For example, in case of `start immediately', and two regions are defined for one field, the offset of the lower region must be greater than (offset + length) the upper region, if not, the actual counted H and V position at the end of the upper task is beyond the programmed offsets and the processing will `wait for next V'. * Basically the trigger conditions are checked, when a task is activated. It is important to realize, that they are not checked while a task is inactive. So you can not trigger to next logic 0 or logic 1 with overlapping offset and active video ranges between the tasks (e.g. task A STRC[2:0] = 2, YO[11:0] = 310 and task B STRC[2:0] = 3, YO[11:0] = 310 results in output field rate of 503 Hz). * After power-on or software reset (via SWRST[88H[5]]) task B gets priority over task A.
In `field mode' the vertical trigger event gets higher priority than the vertical window definition. The processing is normally started at line number YO and ends at line number YS, but - if a vertical trigger occurs, before the line number YS is reached, the field processing is terminated and the next task is checked - if the actual line count at V-trigger is between the YO and the YS value, the task processing is started, also if the line number YO is missed.
8.3.1.3
Output field processing
As a reference for the output field processing, two signals are available for the back-end hardware.
These signals are the input field ID from the scaler source and a TOOGLE flag, which shows that an active task is used an odd (1, 3, 5...) or even (2, 4, 6...) number of times. Using a single or both tasks and reducing the field or frame rate with the task handling functionality, the TOGGLE information can be used, to reconstruct an interlaced scaled picture at a reduced frame rate. The TOGGLE flag isn't synchronized to the input field detection, as it is only dependent on the interpretation of this information by the external hardware, whether the output of the scaler is processed correctly (see Section 8.3.3). With OFIDC = 0, the scalers input field ID is available as output field ID on bit D6 of SAV and EAV, respectively on pin IGP0 (IGP1), if FID output is selected.
When OFIDC[90H[6]] = 1, the TOGGLE information is available as output field ID on bit D6 of SAV and EAV, respectively on pin IGP0 (IGP1), if FID output is selected.
Confidential - NDA required
page 52
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Additionally the bit D7 of SAV and EAV can be defined via CONLH[90H[7]]. CONLH[90H[7]] = 0 (default) sets D7 to logic 1, a logic 1 inverts the SAV/EAV bit D7. So it is possible to mark the output of the both tasks by different SAV/EAV codes. This bit can also be seen as `task flag' on the pins IGP0 (IGP1), if TASK output is selected.
Pr eli ND m A ina req ry uir ed
Confidential - NDA required page 53
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Filename: SAA7115_Datasheet.fm
Confidential - NDA required page 54
Table 12 Examples for field processing SUBJECT
Processed by task State of detected ITU 656 FID TOGGLE flag
Bit D6 of SAV/EAV byte
Required sequence conversion at the vertical scaler(8) Output(9) Notes
1. Single task every field; OFIDC = 0; subaddress 90H at 40H; TEB[80H[5]] = 0.
2. Tasks are used to scale to different output windows, priority on task B after SWRST. 3. Both tasks at 12 frame rate; OFIDC = 0; subaddresses 90H at 43H and C0H at 42H.
4. In examples 3 and 4 OFIDC = 1, thus the association between input FID and tasks may be flipped, dependent on which time the SWRST is deasserted. 5. Task B at 23 frame rate constructed from neighbouring motion phases; task A at 13 frame rate of equidistant motion phases; subaddresses 90H at 41H and C0H at 45H. 6. Task A and B at 13 frame rate of equidistant motion phases; subaddresses 90H at 41H and C0H at 49H. 7. Due to no data output for this field, the state of the prior field is hold. 9. O = data output; NO = no output. Last edited by H. Lambers 8. It is assumed that input/output FID = 0 (= upper lines); UP = upper lines; LO = lower lines.
yd re ar ni iu im eq lr e rA P D N
EXAMPLE 1(1) 1/2 A 1 EXAMPLE 2(2)(3) 1/2 A 1 2/1 B 0 EXAMPLE 3(2)(4)(5) 2/1 A 0 2/2 B 1 EXAMPLE 4(2)(4)(6) 2/1 A 0 2/2 B 1 FIELD SEQUENCE FRAME/FIELD 1/1 A 0 2/1 A 0 1/1 B 0 2/2 A 1 1/1 B 0 1/2 B 1 3/1 B 0 3/2 A 1 1/1 B 0 1/2 B 1 3/1 B 0 3/2 A 1 1 0 1 1 1 0 0 1 0 1 1 0 0 0(7) 0(7) UP UP 1 1 1 1 1(7) 1(7) LO LO 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 0 0 UP UP O LO LO O UP UP O UP UP O LO LO O UP UP O LO LO O UP LO O LO UP O UP LO O LO LO O UP UP O LO UP O LO LO O UP LO O UP UP O LO UP O NO NO Datasheet SAA7115 Version: 0.67 CVIP2 Date: 10/23/01
CS-PD Hamburg
Philips Semiconductors
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
8.3.2
HORIZONTAL SCALING
Pr eli ND m A ina req ry uir ed
1 1024 H-scale ratio = --------------------------- x -----------------------------XPSC[5:0] XSCY[12:0] where the parameter of prescaler XPSC[5:0] = 1 to 63 and the parameter of VPD phase interpolation XSCY[12:0] = 300 to 8191 (0 to 299 are only theoretical values). For example, 13.5 is to split in 14 x 1.14286. The binary factor is processed by the prescaler, the arbitrary non-integer ratio is achieved via the variable phase delay VPD circuitry, called horizontal fine scaling. The latter calculates horizontally interpolated new samples with a 6-bit phase accuracy, which relates to less than 1 ns jitter for regular sampling scheme. Prescaler and fine scaler create the horizontal scaler of the SAA71157115. Using the accumulation length function of the prescaler (XACL[5:0] A1H[5:0]), application and destination dependent (e.g. scale for display or for a compression machine), a compromise between visible bandwidth and alias suppression can be determined.
The overall horizontal required scaling factor has to be split into a binary and a rational value according to the equation: output pixel With H-scale ratio = ----------------------------- there is input pixel
8.3.2.1
Horizontal prescaler (subaddresses A0H to A7H and D0H to D7H)
The prescaling function consists of an FIR anti-alias filter stage and an integer prescaler, which creates an adaptive prescale dependent low-pass filter to balance sharpness and aliasing effects.
The FIR prefilter stage implements different low-pass characteristics to reduce alias for downscales in the range of 1 to 12. A CIF optimized filter is built-in, which reduces artefacts for CIF output formats (to be used in combination with the prescaler set to 12 scale); see Table 13. Fade-in and fade-out of the filters is achieved by copying an original source sample each as first and last pixel after prescaling. Figs 25 and 26 show the frequency characteristics of the selectable FIR filters. Table 13 FIR prefilter functions PFUV[1:0] A2H[7:6] PFY[1:0] A2H[5:4] 00 01 10 11
LUMINANCE FILTER COEFFICIENTS bypassed 121
CHROMINANCE COEFFICIENTS bypassed 121
-1 1 1.75 4.5 1.75 1 -1 12221
3 8 10 8 3 12221
The function of the prescaler is defined by:
* An integer prescaling ratio XPSC[5:0] A0H[5:0] (equals 1 to 63), which covers the integer downscale range 1 to 163 * An averaging sequence length XACL[5:0] A1H[5:0] (equals 0 to 63); range 1 to 64 * A DC gain renormalization XDCG[2:0] A2H[2:0]; 1 down to 1128 - XC2_1 = 0 1 + 1...+ 1 +1
* The bit XC2_1[A2H[3]], which defines the weighting of the incoming pixels during the averaging process: - XC2_1 = 1 1 + 2...+ 2 +1
The prescaler creates a prescale dependent FIR low-pass, with up to (64 + 7) filter taps. The parameter XACL[5:0] can be used to vary the low-pass characteristic for a given integer prescale of 1XPSC[5:0]. The user can therewith decide between signal bandwidth (sharpness impression) and alias.
Confidential - NDA required
page 55
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Remark: Due to bandwidth considerations XPSC[5:0] and XACL[5:0] can be chosen different to the mentioned equations or Table 14, as the H-phase scaling is able to scale in the range from zooming up by factor 3 to downscale by a factor of 10248191.
Pr eli ND m A ina req ry uir ed
Npix_in Equation for XPSC[5:0] calculation is: XPSC[5:0] = lower integer of ---------------------Npix_out where, the range is 1 to 63 (value 0 is not allowed); Npix_in = number of input pixel, and Npix_out = number of desired output pixel over the complete horizontal scaler. The use of the prescaler results in a XACL[5:0] and XC2_1 dependent gain amplification. The amplification can be calculated according to the equation: DC gain = (XC2_1 + 1) x XACL[5:0] + (1 - XC2_1). It is recommended to use sequence lengths and weights, which results in a DC gain amplification of 2N, as these 1 amplitudes can be renormalized by the XDCG[2:0] controlled ------ shifter of the prescaler. N 2 Other amplifications have to be normalized by using the following BCS control circuitry according to the equation: 2 CONT[7:0] = SATN[7:0] = lower integer of --------------------------------DC gain x 64
XDCG[2:0]
Where: 2XDCG[2:0] DC gain
In these cases the prescaler has to be set to an overall gain of 1, e.g. for an accumulation sequence of `1 + 1 + 1' (XACL[5:0] = 2 and XC2_1 = 0), XDCG[2:0] must be set to `010', this equals 14 and the BCS has to amplify the signal to 43 (SATN[7:0] and CONT[7:0] value = lower integer of 43 x 64).
The use of XACL[5:0] is XPSC[5:0] dependent. XACL[5:0] must be < 2 x XPSC[5:0].
XACL[5:0] can be used to find a compromise between bandwidth (sharpness) and alias effects. Figs 27 and 28 show some resulting frequency characteristics of the prescaler.
Table 14 shows the recommended prescaler programming. Other programming settings, than given in Table 14, may result in better alias suppression, but the resulting DC gain amplification needs to be compensated by the BCS control For example, if XACL[5:0] = 5, XC2_1 = 1, then the DC gain = 10 and the required XDCG[2:0] = 4.
The horizontal source acquisition timing and the prescaling ratio is identical for both the luminance path and chrominance path, but the FIR filter settings can be defined differently in the two channels.
Confidential - NDA required
page 56
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
6 V 3 (dB) 0 -3 -6 -9
MHB543
Pr eli ND m A ina req ry uir ed
(1)
-12 -15 -18 -21 -24 -27 -30 -33 -36 -39 -42
(2)
(3)
(1) PFY[1:0] = 01. (2) PFY[1:0] = 10. (3) PFY[1:0] = 11.
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45 f_sig/f_clock
0.5
Fig.25 Luminance prefilter characteristic.
6
MHB544
V 3 (dB) 0 -3 -6 -9
(1)
-12 -15 -18 -21 -24 -27 -30 -33 -36 -39 -42
(2)
(3)
(1) PFUV[1:0] = 01. (2) PFUV[1:0] = 10. (3) PFUV[1:0] = 11.
0
0.025
0.05
0.075
0.1
0.125
0.15
0.175
0.2
0.225 0.25 f_sig/f_clock
Fig.26 Chrominance prefilter characteristic.
Confidential - NDA required
page 57
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
6 V 3 (dB) 0 -3 -6 -9
MHB545
Pr eli ND m A ina req ry uir ed
(5) (4) (3) (2) (1)
-12 -15 -18 -21 -24 -27 -30 -33 -36 -39 -42
XC2_1 = 0; Zero's at 1 f = n x -----------------------XACL + 1
with XACL = (1), (2), (3), (4) or (5)
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45 f_sig/f_clock
0.5
Fig.27 Examples for prescaler filter characteristics: effect of increasing XACL[5:0].
6
MHB546
V 3 (dB) 0 -3 -6 -9
(1)
3 dB at 0.25
(2)
6 dB at 0.33
(6)
(5)
(4)
(3)
-12 -15 -18 -21 -24 -27 -30 -33 -36 -39 -42
(1) XC2_1 = 0 and XACL[5:0] = 1. (2) XC2_1 = 1 and XACL[5:0] = 2. (3) XC2_1 = 0 and XACL[5:0] = 3. (4) XC2_1 = 1 and XACL[5:0] = 4. (5) XC2_1 = 0 and XACL[5:0] = 7. (6) XC2_1 = 1 and XACL[5:0] = 8.
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45 f_sig/f_clock
0.5
Fig.28 Examples for prescaler filter characteristics: setting XC2_1 =1.
Confidential - NDA required
page 58
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 14 XACL[5:0] example of usage RECOMMENDED VALUES FIR PREFILTER PFY (PB-PR) 0 to 2
Pr eli ND m A ina req ry uir ed
PRESCALE XPSC RATIO [5:0] FOR LOWER BANDWIDTH REQUIREMENTS XC2_1 0 1 FOR HIGHER BANDWIDTH REQUIREMENTS XC2_1 0 0 XACL[5:0] 0 2 XDCG[2:0] 0 2 XACL[5:0] 0 1 XDCG[2:0] 0 1 1 1 12 2 0 to 2 2 2 2 3 3 3 3 (1 2 1) x 1 0 1 1 1 14(1) (1 1) x 12(1) 13 14 15 16 17 18 19 3 4 5 6 7 8 9 4 7 8 8 8 3 3 4 4 4 4 4 3 4 7 7 7 8 8 0 1 0 0 0 1 1 2 3 3 3 3 4 4 (1 2 2 2 1) x 18(1) (1 1 1 1) x 14(1) (1 1 1 1 1 1 1 1) x 18(1) (1 2 2 2 1) x 18(1) (1 2 2 2 2 2 2 2 1) x 116(1) (1 1 1 1 1 1 1 1) x 18(1) (1 2 2 2 2 2 2 2 1) x 116(1) (1 2 2 2 2 2 2 2 1) x 116(1) 0 0 (1 1 1 1 1 1 1 1) x 18(1) (1 1 1 1 1 1 1 1) x 18(1) 15 15 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) x 116(1) (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) x 116(1) 16 1 5 (1 2 2 2 2 2 2 2 1) x 116(1) (1 2 2 2 2 2 2 2 1) x 116(1) 1 4 (1 2 2 2 2 2 2 2 1) x 1 1 1 1 1 1 1 116(1) 5 5 5 6 6 6 7 110 10 8 3 (1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1) x
1)
132(
113 115 116 119 131 132 135
13 15 16 19 31 32 35
16 31 32 32 32 63 63
1 0 1 1 1 1 1
5 5 6 6 6 7 7
16 16 16 32 32 32 63
3 3 3 3 3 3 3
Note
1. Resulting FIR function.
Confidential - NDA required
page 59
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
8.3.2.2
Horizontal fine scaling (variable phase delay filter; subaddresses A8H to AFH and D8H to DFH)
Pr eli ND m A ina req ry uir ed
In combination with the prescaler a compromise between sharpness impression and alias can be found, which is signal source and application dependent. For the luminance channel a filter structure with 10 taps is implemented, and for the chrominance a filter with 4 taps. Luminance and chrominance scale increments (XSCY[12:0] A9H[4:0]A8H[7:0] and XSCC[12:0] ADH[4:0]ACH[7:0]) are defined independently, but must be set in a 2 : 1 relationship in the actual data path implementation. The phase offsets XPHY[7:0] AAH[7:0] and XPHC[7:0] AEH[7:0] can be used to shift the sample phases slightly. XPHY[7:0] and XPHC[7:0] covers the phase offset range 7.999T to 132T. The phase offsets should also be programmed in a 2 : 1 ratio. The underlying phase controlling DTO has a 13-bit resolution. Npix_in 1 XSCY[12:0] According to the equations XSCY[12:0] = 1024 x --------------------------- x ---------------------- and XSCC[12:0] = -----------------------------XPSC[5:0] Npix_out 2 the VPD covers the scale range from 0.125 to zoom 3.5. VPD acts equivalent to a polyphase filter with 64 possible phases. In combination with the prescaler, it is possible to get very accurate samples from a highly anti-aliased integer downscaled input picture. 8.3.3 VERTICAL SCALING The vertical scaler of the SAA7115 consists of a line FIFO buffer for line repetition and the vertical scaler block, which implements the vertical scaling on the input data stream in 2 different operational modes from theoretical zoom by 64 down to icon size 164. The vertical scaler is located between the BCS and horizontal fine scaler, so that the BCS can be used to compensate the DC gain amplification of the ACM mode (see Section 8.3.3.2) as the internal RAMs are only 8-bit wide.
The horizontal fine scaling (VPD) should operate at scaling ratios between 12 and 2 (0.8 and 1.6), but can also be used for direct scaling in the range from 17.999 to (theoretical) zoom 3.5 (restriction due to the internal data path architecture), without prescaler.
8.3.3.1
Line FIFO buffer (subaddresses 91H, B4H and C1H, E4H)
The line FIFO buffer is a dual ported RAM structure for 768 pixels, with asynchronous write and read access. The line buffer can be used for various functions, but not all functions may be available simultaneously.
The line buffer can buffer a complete unscaled active video line or more than one shorter lines (only for non-mirror mode), for selective repetition for vertical zoom-up. For zooming up 240 lines to 288 lines e.g., every fourth line is requested (read) twice from the vertical scaling circuitry for calculation.
For conversion of a 4 : 2 : 0 or 4 : 1 : 0 input sampling scheme (MPEG, video phone, Indeo YUV-9) to ITU like sampling scheme 4 : 2 : 2, the chrominance line buffer is read twice or four times, before being refilled again by the source. It has to be preserved by means of the input acquisition window definition, so that the processing starts with a line containing luminance and chrominance information for 4 : 2 : 0 and 4 : 1 : 0 input. The bits FSC[2:1] 91H[2:1] define the distance between the Y/C lines. In the case of 4 : 2 : 2 and 4 : 1 : 1 FSC2 and FSC1 have to be set to `00'. The line buffer can also be used for mirroring, i.e. for flipping the image left to right, for the vanity picture in video phone applications (bit YMIR[B4H[4]]). In mirror mode only one active prescaled line can be held in the FIFO at a time. The line buffer can be utilized as an excessive pipeline buffer for discontinuous and variable rate transfer conditions at the expansion port or image port.
Remark to 4 : X : 0 input from X-port: These input streams need to look like regular 4:2:2 input and are formatted to the internal 16 bit YUV format. At it's input port the line fifo only ignores 1 of 2, resp. 3 of 4 chrominance lines, where FSC defines the skipping sequence.
Confidential - NDA required
page 60
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
8.3.3.2
Vertical scaler (subaddresses B0H to BFH and E0H to EFH)
Vertical scaling of any ratio from 64 (theoretical zoom) to 163 (icon) can be applied.
Pr eli ND m A ina req ry uir ed
* LPI mode: In LPI mode (YMODE = 0) two neighbouring lines of the source video stream are added together, but weighted by factors corresponding to the vertical position (phase) of the target output line relative to the source lines. This linear interpolation has a 6-bit phase resolution, which equals 64 intra line phases. It interpolates between two consecutive input lines only. LPI mode should be applied for scaling ratios around 1 (down to 12), it must be applied for vertical zooming. * ACM mode: The vertical Accumulation (ACM) mode (YMODE = 1) represents a vertical averaging window over multiple lines, sliding over the field. This mode also generates phase correct output lines. The averaging window length corresponds to the scaling ratio, resulting in an adaptive vertical low-pass effect, to greatly reduce aliasing artefacts. ACM can be applied for downscales only from ratio 1 down to 164. ACM results in a scale dependent DC gain amplification, which has to be precorrected by the BCS control of the scaler part. The phase and scale controlling DTO calculates in 16-bit resolution, controlled by parameters YSCY[15:0] B1H[7:0] B0H[7:0] and YSCC[15:0] B3H[7:0] B2H[7:0], continuously over the entire filed. A start offset can be applied to the phase processing by means of the parameters YPY3[7:0] to YPY0[7:0] in BFH[7:0] to BCH[7:0] and YPC3[7:0] to YPC0[7:0] in BBH[7:0] to B8H[7:0]. The start phase covers the range of 25532 to 132 lines offset. By programming appropriate, opposite, vertical start phase values (subaddresses B8H to BFH and E8H to EFH) depending on odd/even field ID of the source video stream and A/B-page cycle, frame ID conversion and field rate conversion are supported (i.e. de-interlacing, re-interlacing). Figs 29 and 30 and Tables 15 and 16 describe the use of the offsets. Remark: The vertical start phase, as well as scaling ratio are defined independently for luminance and chrominance channel, but must be set to the same values in the actual implementation for accurate 4 : 2 : 2 output processing. The vertical processing communicates on its input side with the line FIFO buffer. The scale related equations are: * Scaling increment calculation for ACM and LPI mode, downscale and zoom: Nline_in YSCY[15:0] and YSCC[15:0] = lower integer of 1024 x ------------------------ Nline_out * BCS value to compensate DC gain in ACM mode (contrast and saturation have to be set): CONT[7:0] A5H[7:0] respectively SATN[7:0] A6H[7:0] or Nline_out = lower integer of ------------------------ x 64 , Nline_in 1024 = lower integer of ------------------------------ x 64 YSCY[15:0]
The vertical scaling block consists of another line delay, and the vertical filter structure, that can operate in two different modes; Linear Phase Interpolation (LPI) and accumulation (ACM) mode. These are controlled by YMODE[B4H[0]]:
8.3.3.3
Use of the vertical phase offsets
As described in Section 8.3.1.3, the scaler processing may run randomly over the interlaced input sequence (see parameters STRC[1:0], FSKP[2:0] and RPTSK). Additionally the interpretation and timing between ITU 656 field ID and real-time detection by means of the state of H-sync at the falling edge of V-sync may result in different field ID interpretation. A vertically scaled interlaced output also gets a larger vertical sampling phase error, if the interlaced input fields are processed, without regard to the actual scale at the starting point of operation (see Fig.29).
For correct interlaced processing the vertical scaler must be used with respect to the interlace properties of the input signal and, if required, for conversion of the field sequences.
Confidential - NDA required
page 61
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Four events should be considered, they are illustrated in Fig.30.
Pr eli ND m A ina req ry uir ed
unscaled input scaled output, no phase offset scaled output, with phase offset field 1 field 2 field 1 field 2 field 1 field 2 correct scale dependent position scale dependent start offset mismatched vertical line distances
MHB547
Fig.29 Basic problem of interlaced vertical scaling (example: downscale 35).
Example: interlace vertical scaling down to 3 / 5, with field conversion field 1 upper field 2 lower field 1 field 2
field 1
field 2
R
A
case UP-UP case LO-LO case UP-LO case LO-UP B C
D
Note: Offset = 1024 / 32 = 32 = 1 line shift R = reference position for upper output field A = 1/2 input line shift = 16 B = 1/2 input line shift +1/2 scale increment = YSCY/64 + 16 C = 1/2 scale increment= YSCY / 64 D = no offset = 0
Fig.30 Derivation of the phase related equations
Confidential - NDA required
page 62
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
In Tables 15 and 16 PHO is a usable common phase offset. It should be noted that the equations of Fig.30 produce an interpolated output, also for the unscaled case, as the geometrical reference position ( R ) for all conversions is the position of the first line of the lower field (see Table 15).
Pr eli ND m A ina req ry uir ed
If there is no need for UP-LO and LO-UP conversion and the input field ID is the reference for the back-end operation, then it is UP-LO = UP-UP and LO-UP = LO-LO and the 12 line phase shift (PHO + 16) can be skipped. This case is listed in Table 16. The SAA7115 supports 4 phase offset registers per task and component (luminance and chrominance). The value of 20H represents a phase shift of one line. The registers are assigned to the following events; e.g. subaddresses B8H to BBH: * B8H: 00 = input field ID 0, task status bit 0 (toggle status, see Section 8.3.1.3) * B9H: 01 = input field ID 0, task status bit 1 * BAH: 10 = input field ID 1, task status bit 0 * BBH: 11 = input field ID 1, task status bit 1. Depending on the input signal (interlaced or non-interlaced) and the task processing 50 Hz or field reduced processing with one or two tasks (see examples in Section 8.3.1.3), other combinations may also be possible, but the basic equations are the same. Table 15 Examples for vertical phase offset usage: global equations (referring to reference position R) INPUT FIELD UNDER PROCESSING OUTPUT FIELD USED ABBREVIATION INTERPRETATION UP-UP UP-LO EQUATION FOR PHASE OFFSET CALCULATION (DECIMAL VALUES) Upper input lines Upper input lines Lower input lines Lower input lines upper output lines lower output lines PHO + 16 YSCY[15:0] PHO + ------------------------------ + 16 64 upper output lines lower output lines LO-UP LO-LO PHO YSCY[15:0] PHO + -----------------------------64 Table 16 Vertical phase offset usage; assignment of the phase offsets for OFIDC[90[6]] = 0, scaler input field ID as output ID assumed backend interprets output field ID at "0" as upper output lines task status bit 0 1 vertical phase offset detected input field ID equation to be used (values) 0 = upper lines 0 = upper lines 1 = lower lines 1 = lower lines YPY(C)0 YPY(C)1 UP-UP (PHO) UP-UP (PHO) 0 1 YPY(C)2 YPY(C)3 LO-LO (PHO + YSCY / 64 - 16) LO-LO (PHO + YSCY / 64 - 16) Notes 1. referring to the upper input field as reference position, a value of 16 is to be substracted from the global equations of table 15. Confidential - NDA required page 63
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 17 Vertical phase offset usage: Assignment of the phase offsets for OFIDC[90[6]] = 1 detected input field ID task status bit 0 1 vertical phase offset backend interprets output field ID "0" as upper lines; equation to be used backend interprets output field ID "1" as upper lines; equation to be used
Pr eli ND m A ina req ry uir ed
0 = upper lines 0 = upper lines 1 = lower lines 1 = lower lines YPY(C)0 YPY(C)1 UP-UP UP-LO LO-LO LO-UP UP-LO LO-LO UP-UP LO-UP 0 1 YPY(C)2 YPY(C)3 Confidential - NDA required page 64
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
8.4
VBI-data decoder and capture (subaddresses 40H to 7FH)
Pr eli ND m A ina req ry uir ed
8.4.1 VBI DATA SLICER The circuitry recovers the actual clock phase during the clock run-in period, slices the data bits with the selected data rate, and groups them into bytes. The result is buffered into a dedicated VBI-data FIFO with a capacity of 2 x 56 bytes (2 x 14 Dwords). The VBI data slicing is controlled by the programming registers 40H to 5DH. Register 40H and 58H are controlling the slicing process itself. The Line Control Registers (LCR registers) 41H to 57H are defining the data type (VBI data standard) to be decoded. The data type is specified on a line by line basis for the lines two to 23 separately for even and odd field and depends additionally on the detected video standard (i.e. whether the incoming video is a 50Hz / 625 lines or 60Hz / 525 lines signal). The definition for line control register LCR24 is valid for the rest of the corresponding field, normally no text data (video data) should be selected there (LCR24_[7:0] = FFH) to stop the activity of the VBI-data slicer during active video. The supported VBI-data standards are shown in Table 18 for 60Hz / 525 lines signals and 19 for 50Hz / 625 lines signals. Table 18 60Hz / 525 Lines VBI Data types supported by the data slicer block Data type 60Hz / 525 Lines VBI Data Standards Data rate (Mbits/s) FRAMING CODE No. 0 binary 0000 DESCRIPTION FRAMING CODE WINDOW WST525 NABTS MOJI Hamming check Decoder output data format raw data do not acquire (active video) Y-CB-CR 4:2:2 raw data 1 2 3 0001 0010 0011 US Teletext (WST525) NABTS Moji 5.7272 5.7272 0x27 always programmable
(1)
The SAA7115 contains a versatile VBI-data decoder and the option of reading back sliced VBI data for low bitrate standards.
optional
5.7272 0.503
programmable 001 binary 10 binary
raw data
4
0100
US Closed Caption (CC525, Line21) US Wide Screen Signalling (WSS525, CGMS)
CC525
-
raw data
5 6 7 8 9
0101 0110 0111 1000 1001
0.447443 1.7898 1.007 0.503 5 -
WSS525
-
raw data
VITC525
10 binary 0x4ED -
VITC525 4ED H -
-
raw data
Gemstar2x Gemstar1x reserved
-
raw data
001 binary
-
raw data
reserved raw data raw data
10 11 12 13 14 15
1010 1011 1100 1101 1110 1111
Open1 (5 MHz) reserved
programmable -
8-16us -
-
Open2 (5,7272 MHz)
5.7272 -
programmable -
8-16us -
-
reserved raw data
do not acquire (RAW) do not acquire (Test)
-
reserved
do not acquire (active video)
Y-CB-CR 4:2:2
1.
should be set to 0x47 for Moji
Confidential - NDA required
page 65
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 19 50Hz / 625 Lines VBI Data types supported by the data slicer block Data type No. 0 binary 0000 DESCRIPTION 50Hz / 625 Lines VBI Data Standards Data rate (Mbits/s) FRAMING CODE FRAMING CODE WINDOW WST625 gen_text Hamming check Decoder output data format raw data
Pr eli ND m A ina req ry uir ed
do not acquire (active video) Y-CB-CR 4:2:2 1 2 3 4 5 0001 0010 0011 0100 0101 European Teletext (WST625), Chinese Teletext (CCST625) Euro Teletext with progammable Framing Code 6.9375 6.9375 0x27 always programma ble 001 binary optional raw data reserved raw data Euro Closed Caption (CC625) Euro Wide Screen Signalling (WSS625) 0.500 5 CC625 raw data 0x1E3C1F 10 binary 0x9951 WSS625 raw data 6 7 8 9 0110 0111 1000 1001 VITC625 VPS reserved reserved 1.8125 5 VITC625 VPS raw data raw data raw data reserved raw data 10 1010 Open1 (5 MHz) 5 programma ble programma ble 8-16us 11 1011 Open2 (5,7272 MHz) 5.7272 8-16us raw data 12 13 14 15 1100 1101 1110 1111 reserved reserved raw data reserved do not acquire (RAW) do not acquire (Test) do not acquire (active video) Y-CB-CR 4:2:2 The adjustment of the slicer processing to the input signal source is defined by the programming registers 59h to 5BH, There are programmable offsets in the horizontal and vertical direction available: parameters HOFF[10:0] 5BH[2:0] 59H[7:0], VOFF[8:0] 5BH[4] 5AH[7:0], FOFF[5BH[7]] and VEP[5BH[5]]). Contrary to the scaler counting scheme, the slicer offsets define the position of the H and V trigger events related to the processed video field. The trigger events are the falling edge of HREF and the falling or rising edge of V123 (defined by VEP[5BH[5]]) from the decoder processing part. Note: The field ID, used for the slicers data packing, is taken at the internal pixel `1' and line `1' position. Hence for correct line counting according ITU656 and for 60 Hz input signals (see Fig.23), the old value of the field ID is taken as ID reference. This has effect on the I2C read back registers, on the LCR table, the LCR controlled field ID generation and the internal header information of the slicers output stream. For consistent ID interpretation, the vertical offset parameter VOFF for NTSC has to be set to 0x03. For this case the LCR table covers the range from line 5 to 27 and line 21 corresponds to LCR18. The relationship of these programming values to the input signal and the recommended values is outlined in table 7 to table 10. The register SLDMOD[4:0] 5DH[4:0] defines the Slicer Data Output Mode at the I-Port of the SAA7115. This register enables the VBI output and defines the mode of data insertion into the I-port data stream. Status Information can be read form register 5EH. Confidential - NDA required page 66
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
8.4.2
I2C READBACK OF SLICED VBI DATA
Pr eli ND m A ina req ry uir ed
The I2C Readback unit offers readback for the following VBI data standards via the I2C bus (subaddresses 66H 7FH): - US Closed Caption (CC525): 1 byte header + 2 x 2 bytes payload * 60Hz / 525 lines VBI data standards - Copy Generation Management System (CGMS, US Wide Screen Signalling (WSS525)): 1 byte header + 2 x 3 bytes payload - Gemstar1x: 1 byte header + 2 x 2 bytes payload - Gemstar2x: 1 byte header + 2 x 4 bytes payload - European Closed Caption (CC625): 1 byte header + 2 x 2 bytes payload * 50Hz / 625 lines VBI data standards - European Wide Screen Signalling (WSS625, majority decoded and be-phase decoded): 1 byte header + 2 x 2 bytes payload For each VBI data standard the amount of data of one frame (one line per field) and a one byte header can be stored. The I2C Readback registers for Wide Screen Signalling and Closed Caption are shared for 60Hz / 525 lines VBI data standards and 50Hz / 625 lines VBI data standards. In case of decoding WSS625 this data is sore to the same registers than decoded WSS525 data with the third payload byte of each line left unconsidered. The one byte header delivers decoding error status and the current update status separately for each field as well as a free running 4 bit field counter as reference information, to be able to detect multiple read data or loss of data (refer to table 20) Table 20 Structure of the I2C readback header BIT 7 6 5 4 HEADER DESCRIPTION data of odd field (field_id = 0) is incomplete, i.e. not updated since last read, if set. one or more data bytes of odd field (field_id = 0) are erroneous (data valid signal became inactive), if set. data of even field (field_id = 1) is incomplete. i.e. not updated since last read, if set. field_count (counts up, field identifier represents the LSB) one or more data bytes of even field (field_id = 1) are erroneous (data valid signal became inactive), if set. 3:1 The I2C Readback unit guarantees consistency between header information and sliced data using internal mirror-registers for the sliced data, which updated at the same time the header is accessed for reading via the I2C bus. I.e. The I2C Readback header must be always accessed before getting the latest data. In case the sliced data has been read already or is being updated at the time the header is accessed for reading, this will be signalled in the header bits 7 and 5 for each field separately. Additionally to the read access to the header the data coming from VBI data slicer is copied into one of the mirror registers only, if the following additional conditions are satisfied: * The data type as set in the LCR register must equal to the one of the sampled data. * The data must be indicated as valid data. * The maximum number of data bytes per line (CC, WSS625, Gemstar1x:2, CGMS:3, Gemstar2x: 4) is not exceeded Confidential - NDA required page 67
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
If there is less data in a line than expected for the appropriate data type, this is marked as an error inside the header. If there is more data in a line, this does not lead to an error, and the additional data bytes are neglected.
Pr eli ND m A ina req ry uir ed
8.4.3 SLICED VBI DATA OUTPUT AT THE I-PORT The following sections are describing the sliced VBI payload data output at the I-Port. Chapter 8.5 describes the output modes for VBI data at the I-Port.
8.4.3.1
Euro WST, US WST and NABTS Data
Euro WST, US WST and NABTS Data are stored in transmission order; first received bit becomes LSB of byte in payload.
8.4.3.2
WSS 625 Data
Each payload byte contains are a group of 6 bits (LSB aligned) representing a single symbol (a WSS625 bit) bi-phase coded and then oversampled at 3 times the baud rate. To decode the individual bits, it is usual to take a majority decision on each group of 3 bits (majority of 0s or 1s), then compare the first and second three-bit groups to do bi-phase decoding.
8.4.3.3
WSS 525 Data
The received data contains 20 bits including 6 bits of CRC code; all 20 bits are packed into 3 bytes (LSB aligned in byte 3) and written to the packet with the first received bit becoming LSB of the first payload byte. CRC checking is performed on the received data (indicated in in the MSB of byte 3; set to `0' in case of no errors). Unused bytes are set to zero.
8.4.3.4
VPS Data
Each pair of two consecutive bits in a payload data byte is a single symbol, biphase coded. 01 represents a 1 symbol,10 represents a 0 symbol. 00 and 11 are biphase errors. The data can be decoded in minimum processor time by using a look-up table (256 bytes) using the received data as index, which gives the correct decoded biphase data in the ls 4 bits of each byte and 4 corresponding error flags; e.g.: a stored byte with hex value 0x1B (binary 00.01.10.11) would be decoded as 1001.0100 (i.e.: the middle two pairs 01 and 10 decode correctly to 1 and 0, but the outer two pairs 00 and 11 are errors).
8.4.3.5
Closed Caption
Closed Caption is stored in transmission order - first received bit becomes LSB of the first payload byte.
8.4.3.6
Moji Data
The Moji Data Line contains 272 bits, made up of a 14-bit prefix, 22 Information Data bytes (176 bits) and an 82-bit Parity Check. The captured bits are constructed into bytes, LSB first, in transmission order, but the first payload byte of the packet contains only 6 bits of trans-mitted data in bits 2 -7. Bit 2 corresponds to the first transmitted bit; bits 1 and 0 are filled with zeros.
This is done in order to align the Information Data bytes to byte boundaries in the constructed data packet. It also means that the last data byte in the packet contains only 2 transmitted bits (in positions 0 - 1) - the remaining 6 bits are undefined and should be ignored.
Confidential - NDA required
page 68
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
8.4.3.7
VITC Data
Pr eli ND m A ina req ry uir ed
The VITC data line in both 625- and 525-line video formats contains 90 bits, which can be divided into nine 10-bit groups. The first two bits of each group are defined as Synchronising Bits, and consist of a fixed 1 followed by a fixed 0 . These Synchronising Bits are excluded from the data packet constructed by the VBI Slicer, leaving exactly nine 8-bit bytes of useful data. The payload bytes are presented in transmission order, with the LSB of each corresponding to the first transmit-ted bit. Note that this behaviour is different from the VBI Data Slicer of the predecessors of the SAA7115 that supported the VITC data types.
8.4.3.8
Open Data Types
The Open data types are provided primarily to allow capture of low bitrate data types that are not specifically supported by the Data Capture Unit, by oversampling the transmitted data and leaving software to extract the individual bytes.
Acquisition starts when a match is found for the programmable framing code; bytes are then captured, LSB first, in transmission order at the specified bit-rate. The search window for the framing code is open between approximately 8 and 16ms into the line, referenced to the falling edge of the H-Sync pulse. The number of bytes captured in the open data types depends on when in this period the framing code match is found: the maximum numbers of bytes to be received are 38 Data Bytes for Open1 and 43 Bytes for Open2.They are the maximum assuming earliest possible detection of the framing code. If the framing code is detected any later, fewer bytes may be captured; also, data capture may extend into the region of the following line, in which case the last few data bytes in the packet will be meaningless. It is left up to the software to process the appropriate amount of data from the packet, as defined by the application for which the open data type is being used.
Confidential - NDA required
page 69
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
8.5
Image port output interface (subaddresses 84H to 87H)
Pr eli ND m A ina req ry uir ed
The clock for the output interface can be derived from an internal clock (decoder or X-port), from the second internal PLL set (PLL2 and CGC2) or an externally provided clock which is appropriate for e.g. VGA and frame buffer. The clock can be up to 33 MHz. The scaler provides the following video related timing reference events (signals), which are available on pins as defined by subaddresses 84H and 85H: * Output field ID * Start and end of vertical active video range * Start and end of active video line * Data qualifier or gated clock * Actually activated programming page (if CONLH is used) * Threshold controlled FIFO filling flags (empty, full, filled) * Sliced data marker. The data stream at the scaler output is accompanied by a data valid flag (or data qualifier) or is transported using a gated clock. The discontinuous output data after the scaling process can be output as they occur or the data may be packed to continuous output lines by means of a trigger mechanism, which is controlled by a separate pulse generator (see addresses F5H to FBH). Clock cycles with invalid data on the I-port data bus (including the HPD pins in 16-bit output mode) are handled in two different ways (controlled by INS80 86H[7]). As before, invalid cycles may be marked with 00H, but additionally a blanking value insertion (80H and 10H) as required by ITU656 is now implemented. The output interface also arbitrates the transfer between scaled video data and sliced text data over the I-port output. The bits SLDOM (5DH) and VITX (86H) are used to control the arbitration. As a further operation the serialization of the internal 32-bit Dwords to 8-bit or optional 16-bit output, as well as the insertion of the extended ITU 656 codes (SAV/EAV for video data, ANC or SAV/EAV codes for sliced text data) are done here. For handshake with the VGA controller, or other memory or bus interface circuitry, programmable FIFO flags are provided (see Section 8.5.2). Confidential - NDA required page 70
Filename: SAA7115_Datasheet.fm
The output interface consists of a FIFO for video and for sliced text data, an arbitration circuit, which controls the mixed transfer of video and sliced text data over the I-port and a decoding and multiplexing unit, which generates the 8 or 16-bit wide output data stream and the accompanied reference and supporting information.
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
8.5.1
SCALER OUTPUT FORMATTER (SUBADDRESSES 93H AND C3H)
Pr eli ND m A ina req ry uir ed
The data formats are defined on Dwords, or multiples, and are similar to the video formats as recommended for PCI multimedia applications, but planar formats are not supported. FSI[2:0] defines the horizontal packing of the data, FOI[1:0] defines how many Y only lines are expected, before a Y/C line will be formatted. If FYSK is set to logic 0 preceding Y only lines will be skipped, and the output will always start with a Y/C line. Additionally the output formatter limits the amplitude range of the video data (controlled by ILLV[85H[5]]); see Table 23. Table 21 Byte stream for different output formats OUTPUT FORMAT BYTE SEQUENCE FOR 8-BIT OUTPUT MODES CB2 CB4 Y2 Y2 Y5 CR2 CR4 Y6 Y3 Y3 CB4 Y4 Y4 Y5 CR4 Y6 Y-CB-CR 4 : 2 : 2 Y-CB-CR 4 : 1 : 1 Y only CB0 CB0 Y0 Y0 CR0 CR0 Y1 Y1 Y5 CB6 Y6 Y8 Y7 CB8 Y12 Y0 Y1 Y2 Y3 Y4 Y7 Y8 Y9 Y10 Y11 Y13 Table 22 Explanation to Table 21 NAME EXPLANATION CBn Yn CB (B - Y) colour difference component, pixel number n = 0, 2, 4 to 718 Y (luminance) component, pixel number n = 0, 1, 2, 3 to 719 CRn CR (R - Y) colour difference component, pixel number n = 0, 2, 4 to 718 Table 23 Limiting range on I-port LIMIT STEP ILLV[85H[5]] 0 1 VALID RANGE SUPPRESSED CODES (HEXADECIMAL VALUE) LOWER RANGE 00 00 to 07 UPPER RANGE FF F8 to FF DECIMAL VALUE 1 to 254 8 to 247 HEXADECIMAL VALUE 01 to FE 08 to F7 8.5.2 VIDEO FIFO (SUBADDRESS 86H) The video FIFO at the scaler output contains 32 Dwords. That corresponds to 64 pixels in 16-bit Y-CB-CR 4 : 2 : 2 format. But as the entire scaler can act as a pipeline buffer, the actual available buffer capacity for the image port is much higher, and can exceed beyond a video line. The video FIFO provides 4 internal flags, reporting to what extent the FIFO is actually filled. These are: * The FIFO Almost Empty (FAE) flag * The FIFO Combined Flag (FCF) or FIFO filled, which is set at almost full level and reset, with hysteresis, only after the level crosses below the almost empty mark * The FIFO Almost Full (FAF) flag * The FIFO Overflow (FOVL) flag. Confidential - NDA required page 71
Filename: SAA7115_Datasheet.fm
The output formatter organizes the packing into the output FIFO. The following formats are available: Y-CB-CR 4 : 2 : 2, Y-CB-CR 4 : 1 : 1, Y-CB-CR 4 : 2 : 0, Y-CB-CR 4 : 1 : 0, Y only (e.g. for raw samples). The formatting is controlled by FSI[2:0] 93H[2:0], FOI[1:0] 93H[4:3] and FYSK[93H[5]].
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
The trigger levels for FAE and FAF are programmable by FFL[1:0] 86H[3:2] (16, 24, 28, full) and FEL[1:0] 86H[1:0] (16, 8, 4, empty).
Pr eli ND m A ina req ry uir ed
8.5.3 TEXT FIFO The data of the internal VBI-data slicer is collected in the text FIFO before the transmission over the I-port is requested (normally before the video window starts). It is partitioned into two FIFO sections. A complete line is filled into the FIFO before a data transfer is requested. So normally, one line of text data is ready for transfer, while the next text line is collected. Thus sliced text data is delivered as a block of qualified data, without any qualification gaps in the byte stream of the I-port. The decoded VBI-data is collected in the dedicated VBI-data FIFO. After capture of a line is completed, the FIFO can be streamed through the image port, preceded by a header, telling line number and standard. The VBI-data period can be signalled via the sliced data flag on pin IGP0 or IGP1. The decoded VBI-data is lead by the ITU ancillary data header (SLDOM[4:0] 5DH[5:0] at value > 0H and <8H) or by SAV/EAV codes (SLDOM[4:0] 5DH[5:0] at value > 0H and bit D3 = 1 ). Similar to the global data qualifier on pin IDQ, the sliced data flag frames the transfer of sliced VBI data from the first to the last byte and can be taken to distinguish video from sliced VBI data. The decoded VBI-data are presented in two different data formats, controlled by bit D0 of SLDOM[4:0]. * SLDOM[0] = 1: values 00H and FFH will be recoded to even parity values 03H and FCH * SLDOM[0] = 0: values 00H and FFH may occur in the data stream as detected. 8.5.4 VIDEO / TEXT ARBITRATION AND DATA PACKING (SUBADDRESS 86H) Sliced text data and scaled video data are transferred over the same bus, the I-port. The mixed transfer is controlled by an arbitration circuit and the SLDOM programming. If the video data are output for the whole field (also during vertical blanking) and the video FIFO does not need to buffer any output pixel, the text data is inserted after the end of a scaled video line, normally during the horizontal blanking interval of the video.
The state of this flag can be seen on the pins IGP0 or IGP1. The pin mapping is defined by subaddresses 84H and 85H (see Section 9.5).
8.5.4.1
VBI insertion in SAV/EAV mode (bit SLDOM[3] = `1')
VBI insertion in SAV/EAV mode (bit SLDOM[3] = `1'): Especially for external devices, which do not recognize the ANC framing of the sliced VBI data and which need to use the SAV/EAV framing, there are now different levels of VBI/video data insertion implemented. This functionality is controlled by SLDOM [5DH]. Levels of sliced data insertion: 1. SLDOM[4] = 0: video and sliced data, according SLDOM[1], in parallel, VBI data after EAV sequence of a video line 2. SLDOM[4] = 1: sliced data, according SLDOM[1], video output is skipped for these lines Note: 1.the insertion after EAV and the skipping is only done, if the scaler region overlaps with the LCR defined VBI region.
Confidential - NDA required
page 72
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
8.5.4.2
Data Packing (bit IMPAK (86H) and programming of the pulse generator via addr. F5H to FBH)
Pr eli ND m A ina req ry uir ed
num_buf_pix is about ~= (PGHAPS - h_blanking - sc_run_in) / 2 = num_buf_lifo + num_buf_fifo Where num_buf_lifo = 0 for num_buf_pix =< 64 and the maximum value of num_buf_lifo = 768dec num_buf_fifo = 64 for num_buf_pix > 64 For unscaled video a level around 1/2 of the buffer capacity (num_buf_lifo + num_buf_fifo = 832dec) is recommended. This leads to a PGHAPS value of about ~= 2 x 416 + h_blanking + sc_run_in = 1192 (PAL case) for the unscaled case. To be able to align the EAV sequences for different scales and regions, PGHBPS of page B is a separate parameter. The number of bytes per line and region defines, whether PGHBPS is to be programmed differently to PGHAPS. If all data types are to be mixed and a fixed SAV/EAV pattern is needed, the VBI slicer has to become the timing master for the data packing. To avoid timing shifts in the EAV pattern, the latest point of text line completion defines the earliest packing timing. This is about 48 clocks before rising edge of the decoders HREF. The slicer data need to be shifted to a position later than this point. The latest point in time is defined by the internal video skipping procedure (SLDOM[4] ='1'). Therefore the end of a video line (EAV) need to have a distance of (number of pixels per line) of clock cycles from the mentioned point of text line completion. Considering the PLL behaviour and for correct video skipping, the recommendation for this situation and EAV alignment for 720 pixel per line and PAL (=1728) is: 1728 - (48+56) - 720 - 1448 = -544 = 1184 >= PGHCPS >= 1728 - (48-20) = 1700 PGHAPS = PGHCPS - num_bytes_per_video_line + num_bytes_per_VBI_package = e.g. 1700 - 1448 + 56 = 308dec For other clock rates than 27 MHz, the mentioned values need to be scaled according to the clock relations, e.g. 24.545454 MHz would give 1560 - 94 - 640 - 1288 = -462 = 1098 >= PGHCPS >= 1560 - 25 = 1535 PGHAPS = e.g. 500 - 1288 + 51 = -737 = 823dec 8.5.5 DATA STREAM CODING AND REFERENCE SIGNAL GENERATION (SUBADDRESSES 84H, 85H AND 93H) As H and V reference signals are logic 1, active gate signals are generated, which frame the transfer of the valid output data. As an alternative to the gates, H and V trigger pulses are generated on the rising edges of the gates. Due to the dynamic FIFO behaviour of the complete scaler path, the output signal timing has no fixed timing relationship to the real-time input video stream. So fixed propagation delays, in terms of clock cycles, related to the analog input cannot be defined. The data stream is accompanied by a data qualifier. ITU 656 like codes need to be activated by means of the bit ICODE set to `1'. The behaviour during non qualified clock cycles is defined by the bit INS80 [93H[6]]. With INS80 = `0' the interface behaves like SAA7118/7114 and invalid data cycles are marked with code 00H. Confidential - NDA required page 73
Filename: SAA7115_Datasheet.fm
To make use of the synthesized line locked PLL2 clock and to enable the use of the scaler for a wider application range, it is now possible to retain the output data of the scaler, until a scaled line can be output as a continuous data package. This is done via internal trigger pulses, one for each type of scaler output data (video from page A or B or sliced VBI data). The parameters PGHAPS (video page A), PGHBPS (video page B) and PGHCPS (sliced VBI data) are defining the delay related to the rising edge of the decoders HREF or of the synthesized HREF (generated by the internal pulse generator, see addr. F5H and F6H). The delay is counted in clock cycles and as a rough estimate for the internal buffering level you can take the following equation for the video data streaming. With num_buf_pix = number of buffered pixel, num_buf_lifo = number of pixel buffered in the internal line FIFO num_buf_fifo = number of pixel buffered in the output FIFO h_blanking = number of clock cycles during horizontal blanking = 288 (PAL), 276 (NTSC) sc_run_in = number of clock cycles for scaler running in = about 72 clock cycles for unscaled video
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
For INS80 ='1' the behaviour changes and inside the scalers output line (scaler H-gate on IGPH = `1'), the data are hold during IDQ ='0'. Outside the scalers output, in the remaining horizontal blanking interval, blanking values are inserted.
Pr eli ND m A ina req ry uir ed
The sketched reference signals and events can be mapped to the I-port output pins IDQ, IGPH, IGPV, IGP0 and IGP1. For flexible use the polarities of all the outputs can be modified. The default polarity for the qualifier and reference signals is logic 1 (active). Table 24 shows the relevant and supported SAV and EAV coding, the figures 34, 33, 35, 36 show some basic pulse diagrams. Table 24 SAV/EAV codes on I-port SAV/EAV CODES ON I-PORT(1) (HEX) EVENT DESCRIPTION MSB(2) OF SAV/EAV BYTE = 0 MSB(2) OF SAV/EAV BYTE = 1 COMMENT FIELD ID = 0 FIELD ID = 1 FIELD ID = 0 FIELD ID = 1 0E 13 49 80 C7 Next pixel is FIRST pixel of any active line HREF = active; VREF = active Previous pixel was LAST pixel of any active line, but not the last 54 9D DA HREF = inactive; VREF = active Next pixel is FIRST pixel of any V-blanking line 25 38 62 AB B6 EC F1 HREF = active; VREF = inactive Previous pixel was LAST pixel of the last active line or of any V-blanking line No valid data, don't capture and don't increment pointer 7F HREF = inactive; VREF = inactive 00 (only for INS80 = `0') IDQ pin inactive Notes 1. The leading byte sequence is: FFH-00H-00H. 2. The MSB of the SAV/EAV code byte is controlled by: a) Scaler output data: task A MSB = CONLH[90H[7]]; task B MSB = CONLH[C0H[7]]. b) VBI-data slicer output data: SLDOM[2] = `1' MSB = 1; SLDOM[2] = `0' MSB = 0. Confidential - NDA required page 74
Filename: SAA7115_Datasheet.fm
As a further option, it is possible to provide the scaler with an external gating signal on pin ITRDY. Thereby making it possible to hold the data output for a certain time and to get valid output data in bursts of a guaranteed length.
Last edited by H. Lambers
invalid data or Timing Ref. Code end of raw VBI line
Internal Header
Sliced Data
and Filling Data
Timing Ref. Code
invalid data
CS-PD Hamburg
...
00
00
FF
00
... FF
00
00 EAV
00 SAV SDID DC IDI1 IDI2 D2_1 D2_2 D2_3 D1_1 D1_2 D1_3 D1_4
...
DDC_1 DDC_2 CS BC FF DDC_3 DDC_4
00
00 EAV
00
00
...
Philips Semiconductors
ANC Header
Internal Header
Sliced Data and Filling Data
Confidential - NDA required
FF DID SDID DC IDI1 IDI2 D2_1 D2_2 D1_1 D1_2 D1_3 D1_4 ... DDC_1 DDC_2 CS BC 00 DDC_3 DDC_4 00 ...
00
FF
Filename: SAA7115_Datasheet.fm
Fig.31 Sliced data formats on the I-port in 8-bit mode
- ANC header active for SLDOM[3] = 0
- data output is filled upto the DC count DWord - boundary
CVIP2
Datasheet SAA7115
Version:
Date:
0.67
page 75
Last edited by H. Lambers
yd re ar ni iu im eq lr e rA P D N
10/23/01
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 25 Explanation to Fig.31 NAME SAV start of active data; see Table 26 SDID EXPLANATION sliced data identification: NEP(1), EP(2), SDID5 to SDID0, freely programmable via I2C-bus subaddress 5EH, D5 to D0, e. g. to be used as source identifier Dword count: NEP(1), EP(2), DC5 to DC0. DC describes the number of succeeding 32-bit words: * For SAV/EAV mode DC is fixed to 12 Dwords (byte value 8CH) * For ANC mode the data count DC can be taken from table 27. The count starts with the SDID byte and ends with BC
Pr eli ND m A ina req ry uir ed
DC It should be noted that the number of valid bytes inside the stream can be seen in the BC byte. IDI1 internal data identification 1: OP(3), FID (field 1 = 0, field 2 = 1), LineNumber8 to LineNumber3 = Dword 1 byte 1; see Table 26 IDI2 internal data identification 2: OP(3), LineNumber2 to LineNumber0, DataType3 to DataType0 = Dword 1 byte 2; see Table 26 Dword number n, byte number m Dn_m DDC_4 CS BC last Dword byte 4, note: for SAV/EAV framing DC is fixed to 0BH, missing data bytes are filled up; the fill value is A0H number of valid sliced bytes counted from the D1_3 byte end of active data; see Table 26 the check sum byte, the check sum is accumulated from the SAV (respectively DID) byte to the DDC_4 byte EAV Notes 1. Inverted EP (bit 7); for EP see note 2. 2. Even parity (bit 6) of bits 5 to 0. 3. Odd parity (bit 7) of bits 6 to 0. Confidential - NDA required page 76
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 26 Bytes stream of the data slicer NICK NAME COMMENT subaddress 5DH SLDOM[3:2] = `00' subaddress 5DH SLDOM[3:2] = `01' subaddress 5DH SLDOM[3:2] = `10' D7 NEP D6 EP D5 0 D4 D3 D2 D1 D0
Pr eli ND m A ina req ry uir ed
DID, SAV, EAV D4[5DH] D3[5DH] D2[5DH] D1[5DH] D0[5DH] 1 0 FID(3) P2 P2 I1(4) P1 P1 I0(4) P0 P0 NEP(1) 0 EP(2) 0 FID(3) V(6) V(6) H(7) H(7) P3 P3 subaddress 5DH SLDOM[3:2] = `11' 1 FID(3) EP SDID DC(8) IDI1 CS BC IDI2 programmable via subaddress 5EH NEP D5[5EH] D4[5EH] D3[5EH] D2[5EH] D1[5EH] D0[5EH] DC5 DC4 DC3 DC2 DC1 DC0 NEP OP EP(2) OP(9) CS6 OP FID(3) CS6 0 LN8(10) LN1(10) CS5 CNT5 LN7(10) LN0(10) CS4 CNT4 LN6(10) CS3 LN5(10) CS2 LN4(10) CS1 LN3(10) CS0 LN2(10) DT3(11) CNT3 DT2(11) CNT2 DT1(11) CNT1 DT0(11) CNT0 check sum byte valid byte count Notes 1. NEP = inverted EP (see note 2). 2. EP = Even Parity of bits 5 to 0. 3. FID = 0: field 1; FID = 1: field 2. 4. I1 = 0 and I0 = 0: before line 1; I1 = 0 and I0 = 1: lines 1 to 23; I1 = 1 and I0 = 0: after line 23; I1 = 1 and I0 = 1: line 24 to end of field. 6. V = 0: active video; V = 1: blanking. 5. Subaddress 5DH at 3EH and 3FH are used for ITU 656 like SAV/EAV header generation; recommended value. 7. H = 0: start of line; H = 1: end of line. 9. OP = Odd Parity of bits 6 to 0. 10. LN = Line Number. 8. DC = Data Count in Dwords according to the data type. 11. DT = Data Type according to table. Confidential - NDA required page 77
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 27 Data count (DC) in ANC mode for the various VBI standards Data type No. 0 1 2 3 4 5 6 7 8 9 binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 50Hz / 625 Lines DATA COUNT (DC) IN 32 BIT DW nop 12 12 2 5 5 8 2 60Hz / 525 Lines DATA COUNT (DC) IN 32 BIT DW nop 10 10 2 3 5 3 3 2
Pr eli ND m A ina req ry uir ed
nop 11 nop 12 12 10 11 12 13 14 15 1010 1011 1100 1101 1110 1111 12 12 nop nop nop nop nop nop nop nop Notes 1. `nop' = no data output Confidential - NDA required page 78
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
8.6
Scaler Backend clock generation (subaddresses 30H to 3FH)
Pr eli ND m A ina req ry uir ed
* A Backend Clock to drive the Scaler backend including Image Port data output (refer to chapter 8.6.1): This is an internal clock which is used for the output of data at the image port (I-Port). It can be defined as a square pixel clock for PAL and NTSC (29,5 MHz and 24,5454 MHz respectively). * A frame locked Audio Master clock (output at device pin 37, AMCLK; refer to chapter 8.7): This clock, which is locked to the frame frequency, ensures that there is always the same predefined number of audio samples associated with a frame. This ensures e.g. synchronous recording of audio and video (e.g. capture to hard disk, or non-linear editing). CGC2 DAC Line based Reference second PLL (PLL2) 6 H-Pulse Backend Clock 6 1/4 V-Pulse 6 (digital) Audio
PLL
The SAA7115 incorporates with its Audio clock PLL (APLL), its second digital PLL (PLL2) and its second analog PLL (CGC2) the generation of multiple different clocks for internal and external usage. The following types of clocks can be generated:
1/4 1/3
Frame Reference
CGCDIV
AMCLK (Pin 37)
DTO MSB only
UCGC
AMXCLK (Pin 41) ASCLK (Pin 39) ALRCLK (Pin 40)
ASLRCLK
Fig.32 Square Pixel clock and Audio Clock generation
Confidential - NDA required
page 79
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
8.6.1
SQUARE PIXEL CLOCK GENERATION
The SAA7115 is capable to output video data especially in Square Pixel formats. i.e.:
Pr eli ND m A ina req ry uir ed
* NTSC Video line(525 lines per frame) is output with 640/140 continuous active/inactive video pixel at 24.54 MHz clock frequency. To generate the clock which allows a continuous data stream at the image port the SAA7115 has implemented the second analog PLL (CGC2) which is stimulated by the line locked second digital PLL (PLL2, alias "Square Pixel" PLL). The CGC2 output clock drives the Scaler Backend and the Pulse Generator to deliver video data with Square Pixel format at the I-Port. To avoid Scaler FIFO overflows/underruns the pixel clock must be phase aligned to the video input signal. Hence the reference of the second digital PLL (PLL2) is a horizontal reference signal obtained from the combfilter decoder or the X-Port input XRH (controlled by SPHSEL, register address F1 H [D1]). Only the square pixel clock frequencies of 29.5 MHz and 24.5454 MHz are targeted for driving the scaler backend with PLL2 / CGC2.
* PAL video line (625 lines per frame) is output with 768/176 continuous active/inactive video pixel at 29.5 MHz clock frequency
8.6.1.1
The second PLL (PLL2)
The second PLL (PLL2) consists of a discrete time oscillator (DTO), a phase detector which computes the phase error once per video line while taking into account the current DTO phase and a PI -Loop Filter with programmable P/I coefficients.
If the phase error become less then a programmed locking threshold value SPTHRM [3:0] (register address FF H [3:0]) for a period of time defined number of lines programmed in SPTHRL [3:0] register (register address FF H [7:4]), the PLL2 indicates the status locked. If the PLL is locked, a status register SPLOCK (register address F1H [0]) is set. The PLL2 is controlled by the following settings: * Number of target clock cycles per line divided by 4 (SPLPL, register addresses F1 h [D0], F0 H [D7:D0]
* Nominal DTO increment (SPNINC, register addresses F3 H [D7:D0], F2 H [D7:D0]): The nominal Increment is basic clock frequency setting for PLL2 and hence for CGC2 clock output (CGC2frequency, in scaler backend clock generation mode). If PLL2 is opened it is the only parameter which defines the defines the clock frequency. It depends on the crystal frequency (32.11 MHz or 24.576 MHz) and is calculated as: CGC2frequency 16 SPINC = integer ----------------------------------------------------- 2 4 XTALfrequency
* PLL2 operation mode (SPMOD, register address F1 H [D3:D2]):
- PLL-closed (normal operation mode, SPMOD = 01 bin): This is the normal operation mode of the second PLL (PLL2): the nominal increment plus the content of loop filter define the output (CGC2) frequency.
- Synthesize Clock Mode (SPMOD = 00 bin): The PLL2 is opened and hence the generated clock frequency at CGC2 output depends only on the nominal increment defined by the register SPNINC. The contribution of the loop filter is disabled. The I and P proportion of the loop filter is set to zero. - PLL-hold (SPMOD = 10 bin): The CGC2 output keeps the same clock frequency which was generated when entering this mode. In this mode content of the loop filter of PLL2 will be frozen.
- PLL-Re-Sync (SPMOD = 11 bin) The phase detector of PLL2 is continuously re-synchronized to the selected horizontal reference signal controlled by SPHSEL. The remaining phase error is fed into the loop filter.
* Loop Filter Mode (P/I parameter selection; SPPI, register address F1 H [D7:D4]): As long as the PLL2 is in un-locked state the Loop Filter operates at a fast time constant to enable fast locking to the
Confidential - NDA required
page 80
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
input signal. As soon as the status is locked the PI-filter is controlled by the SPPI setting. Four different modes can be selected controlled via SPPI:
Pr eli ND m A ina req ry uir ed
- Mode 0 H (default); Adaptive mode: The proportional part is controlled dynamically by the magnitude of the phase error. - Mode 1 H; Fast mode Both P and I parameters of the Loop Filter remain on the "unlocked" values, even if PLL2 has locked. - Mode E H; Medium mode: The proportional part (P) of the Loop Filter is set to a medium value and the integral part (I) is set to minimum. - Mode F H; Slow mode: Both the proportional part and the integral part are set to minimum value. Confidential - NDA required page 81
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
8.7
Audio clock generation (subaddresses 30H to 3FH)
Pr eli ND m A ina req ry uir ed
* Generating a frame locked Audio Master clock without using the second analog PLL (CGC2) (refer to chapter 8.7.1): This frame locked audio clock is directly obtained from the digital Audio PLL and output at the device pin AMCLK (pin 37). Hence this signal carries the correct number of clock cycles per frame but still has a high frequency jitter. This clock can be fed to an external PLL and than returned to the AMXCLK pin (pin 41) to generate an serial bitclock - output at the ASCLK pin (pin 39) - and a word select signal - output at the ALRCLK pin (pin 40). Using this audio clock generation method audio clock frequencies it is not possible to generate frequencies of 384*fs and 512*fs (fs = audio sampling frequency) * Generating a low jitter frame locked Audio Master clock supported by the second analog PLL (CGC2) (refer to chapter 8.7.2): In this mode the digital Audio PLL output signal feeds the internal second analog PLL (CGC2) to remove high frequency jitter from the audio clock signal. The resulting clock is output at the device pin AMCLK (pin 37). This is already the audio clock for some high frequency audio clocks. All other audio clocks must be generated by feeding back the AMCLK output signal into the AMXCLK input pin. The audio clock frequency will be defined by the programming value of the SDIV[5:0] register (subaddress 38hex) and output at the ASCLK output pin (pin 39). Both modes ensure that there is always the same predefined number of audio samples associated with a frame, because the audio clock is locked to the frame frequency. 8.7.1 AUDIO CLOCK GENERATION WITHOUT ANALOG PLL (CGC2) ENHANCEMENT
The SAA7115 incorporates with its Audio clock PLL (APLL), its second analog PLL (CGC2) the generation of multiple different audio clocks for external usage. There are two basic modes for generating an audio clock (refer to figure 32):
8.7.1.1
Master audio clock
The audio clock is synthesized from the same crystal frequency as the line-locked video clock is generated. The master audio clock is defined by the parameters: * Audio master Clocks Per Field, ACPF[17:0] 32H[1:0] 31H[7:0] 30H[7:0] according to the equation: audio master clock frequency ACPF[17:0] = round ----------------------------------------------------------------------------- - field frequency
* Audio master Clocks Nominal Increment, ACNI[21:0] 36H[5:0] 35H[7:0] 34H[7:0] according to the equation: audio master clock frequency 23 ACNI[21:0] = round ----------------------------------------------------------------------------- x 2 crystal frequency
See Table 28 for examples.
Remark: For standard applications the synthesized audio clock AMCLK can be used directly as master clock and as input clock for port AMXCLK (short cut) to generate ASCLK and ALRCLK. For high-end applications it is recommended to either use the second CGC for audio clock generation by setting UCGC = 1 (see subaddress 3AH, bit 7) or use an external analog PLL circuit to enhance the performance of the generated audio clock.
Confidential - NDA required
page 82
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 28 Programming examples for audio master clock generation (no CGC2 support) XTALO (MHz) FIELD (Hz) ACPF DECIMAL HEX DECIMAL ACNI HEX
Pr eli ND m A ina req ry uir ed
AMCLK = 256 x 48 kHz (12.288 MHz) 245760 - - 3C000 - - 205005 320CD 32.11 50 3210190 - - 30FBCE - - 59.94 50 3210190 30FBCE 24.576 59.94 AMCLK = 256 x 44.1 kHz (11.2896 MHz) 225792 37200 188348 188348 2DFBC 37200 2DFBC 32.11 50 2949362 2D00F2 59.94 50 59.94 2949362 2D00F2 24.576 225792 3853517 3ACCCD 3853 517 3ACCCD AMCLK = 256 x 32 kHz (8.192 MHz) 163840 28000 136670 136670 215DE 28000 215DE 32.11 50 2140127 20A7DF 59.94 50 59.94 2140127 2796203 20A7DF 24.576 163840 2796203 2AAAAB 2AAAAB
8.7.1.2
Signals ASCLK and ALRCLK
Two binary divided signals ASCLK and ALRCLK are provided for slower serial digital audio signal transmission and for channel-select. The frequencies of these signals are defined by the following parameters: * SDIV[5:0] 38H[5:0] according to the equation:
f AMXCLK f AMXCLK f ASCLK = ------------------------------------- SDIV[5:0] = ------------------- - 1 ( SDIV + 1 ) x 2 2f ASCLK
* LRDIV[5:0] 39H[5:0] according to the equation:
f ASCLK f ASCLK f ALRCLK = -------------------------- LRDIV[5:0] = ---------------------LRDIV x 2 2f ALRCLK
See Table 29 for examples.
Confidential - NDA required
page 83
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 29 Programming examples for ASCLK/ALRCLK clock generation AMXCLK (MHz) 12.288 ASCLK (kHz) 1536 768 SDIV DECIMAL 3 7 HEX 03 07 ALRCLK (kHz) 48 LRDIV DECIMAL 16 8 HEX 10 08
Pr eli ND m A ina req ry uir ed
11.2896 8.192 1411.2 1024 3 03 44.1 32 16 10 2822.4 2048 1 01 32 10 3 03 16 10 1 01 32 10 8.7.2 AUDIO CLOCK GENERATION WITH ANALOG PLL (CGC2) SUPPORT When generating the Audio clock using the second analog PLL (CGC2) the CGC2 is driven by the digital Audio Clock PLL. The Output of CGC2 again is output at the audio master clock output pin AMCLK (pin 37) controlled by the UCGC (address 3A H [7]) programming register. For audio clock frequencies of 512 * fs, with fs = 48.0 KHz or 44.1 KHz this is already the low jitter audio clock. All other low jitter audio clocks are output at the ASCLK pin (pin 39) using the internal divider controlled by SDIV (address 38 H [5:0]) programming register (refer to table 30 and 31). Therefore the audio master clock AMCLK must be returned into the device via the AMXCLK pin (pin 41). The audio master clock again is synthesized from the same crystal frequency as the line-locked video clock and is defined as: * Audio master Clocks Per Field, ACPF[17:0] 32H[1:0] 31H[7:0] 30H[7:0] according to the equation: ( 4 - CGCDIV ) audio master clock frequency ACPF[17:0] = round ----------------------------------------------------------------------------- --------------------------------------- - 16 field frequency * Audio master Clocks Nominal Increment, ACNI[21:0] 36H[5:0] 35H[7:0] 34H[7:0] according to the equation: audio master clock frequency ( 4 - CGCDIV ) 23 ACNI[21:0] = round ----------------------------------------------------------------------------- x 2 --------------------------------------- crystal frequency 16 Note that in this case the audio master clock is not identical to the clock output by the digital audio clock PLL any more. The second analog PLL (CGC2) operates at a centre frequency of 36 MHz if CGCDIV (register address 3A H [6]) is set to 1 and 27 MHz if CGCDIV is set to 0. CGC2 can operate in a range of -18% and +15.8% around these centre frequencies. Confidential - NDA required page 84
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Table 30 Programming examples for frame locked audio clock generation supported by CGC2, fxtal = 24.576 MHz, 625 /525 line systems ACNI ACPF SDIV Audio Clock AMCLK Freq. [MHz] AMXCLK / ASCLK Ratio
Filename: SAA7115_Datasheet.fm
Confidential - NDA required page 85
CGCDIV n * fs [bin]
yd re ar ni iu im eq lr e rA P D N
[dec] [hex] 625 / 525 [dec] [hex] [dec] [hex] [MHz] Output pin (AMCLK / ASCLK) AMCLK ASCLK fs = 48 KHz 512 0 24.576 2097152 200000 122880 / 102502 1e000 / 19066 21c00 / 1c273 na. 0 na. 00 na. 2 24.576 384 1 36.864 2359296 240000 138240 / 115315 18.432 256 0 24.576 2097152 200000 122880 / 102502 1e000 / 19066 21c00 / 1c273 0 00 2 12.288 9.216 ASCLK 192 1 36.864 2359296 240000 138240 / 115315 1 01 4 ASCLK 128 96 64 48 32 1 36.864 2359296 240000 138240 / 115315 21c00 / 1c273 21c00 / 1c273 21c00 / 1c273 21c00 / 1c273 21c00 / 1c273 2 3 5 7 02 03 05 07 6 8 6.144 4.608 ASCLK ASCLK 1 1 1 1 36.864 36.864 36.864 36.864 2359296 2359296 2359296 2359296 240000 240000 240000 240000 138240 / 115315 138240 / 115315 138240 / 115315 138240 / 115315 Datasheet SAA7115 CVIP2 12 16 3.072 2.304 ASCLK ASCLK 11 0B 24 1.536 ASCLK fs = 44.1 KHz 512 0 22.5792 1926758 1d6666 112896 / 94174 1b900 / 16fde 1f020 / 19dda na. 0 na. 00 na. 2 22.5792 AMCLK ASCLK 384 1 33.8688 2167603 211333 127008 / 105946 16.9344 Version: 256 0 22.5792 1926758 1d6666 112896 / 94174 1b900 / 16fde 1f020 / 19dda 0 1 00 01 2 4 11.2896 8.4672 ASCLK Date: 192 1 33.8688 2167603 211333 127008 / 105946 ASCLK 128 1 33.8688 2167603 211333 127008 / 105946 1f020 / 19dda 2 02 6 5.6448 ASCLK 10/23/01 0.67
CS-PD Hamburg
Philips Semiconductors
Last edited by H. Lambers
ACNI CGCDIV n * fs [bin] 96 1 AMCLK Freq. [MHz] [dec] [hex] 625 / 525 [dec]
ACPF [hex]
SDIV [dec] 3 [hex] 03 AMXCLK / ASCLK Ratio 8
Audio Clock [MHz] Output pin (AMCLK / ASCLK) ASCLK
Filename: SAA7115_Datasheet.fm
Confidential - NDA required page 86
yd re ar ni iu im eq lr e rA P D N
33.8688 2167603 211333 127008 / 105946 1f020 / 19dda 4.2336 64 1 33.8688 2167603 211333 127008 / 105946 1f020 / 19dda 6 06 12 2.8224 ASCLK 48 1 33.8688 2167603 211333 127008 / 105946 1f020 / 19dda 7 07 14 2.1168 ASCLK 32 1 33.8688 2167603 211333 127008 / 105946 1f020 / 19dda 11 0b 24 1.4112 ASCLK fs = 32 KHz 512 1 32.768 2097152 200000 122880 / 102502 1e000 / 19066 0 00 2 16.384 ASCLK 384 0 24.576 2097152 200000 122880 / 102502 1e000 / 19066 0 00 2 12.288 8.192 ASCLK Datasheet SAA7115 CVIP2 256 1 32.768 2097152 200000 122880 / 102502 1e000 / 19066 21c00 / 1c273 1 01 4 ASCLK 192 1 36.864 2359296 240000 138240 / 115315 2 02 6 6.144 ASCLK 128 96 64 48 0 24.576 2097152 200000 122880 / 102502 1e000 / 19066 21c00 / 1c273 21c00 / 1c273 21c00 / 1c273 2 5 8 02 05 08 6 4.096 ASCLK 1 1 1 36.864 36.864 36.864 2359296 2359296 2359296 240000 240000 240000 138240 / 115315 138240 / 115315 138240 / 115315 12 18 3.072 2.048 ASCLK ASCLK 11 0b 24 1.536 ASCLK Version: 32 1 36.864 2359296 240000 138240 / 115315 21c00 / 1c273 17 11 36 1.024 ASCLK Date: 10/23/01 0.67
CS-PD Hamburg
Philips Semiconductors
Last edited by H. Lambers
Table 31 Programming examples for frame locked audio clock generation supported by CGC2, fxtal = 32.11MHz, 625 /525 line systems ACNI ACPF SDIV Audio Clock AMCLK Freq. [MHz] AMXCLK / ASCLK Ratio
Filename: SAA7115_Datasheet.fm
Confidential - NDA required page 87
CGCDIV n * fs [bin]
yd re ar ni iu im eq lr e rA P D N
[dec] [hex] 625 / 525 [dec] [hex] [dec] [hex] [MHz] Output pin (AMCLK / ASCLK) AMCLK ASCLK fs = 48 KHz 512 0 24.576 1605095 187de7 122880 / 102502 1e000 / 19066 21c00 / 1c273 na. 0 na. 00 na. 2 24.576 384 1 36.864 1805732 1b8da4 138240 / 115315 18.432 256 0 24.576 1605095 187de7 122880 / 102502 1e000 / 19066 21c00 / 1c273 0 1 00 01 2 4 12.288 9.216 ASCLK 192 1 36.864 1805732 1b8da4 138240 / 115315 ASCLK 128 96 1 36.864 1805732 1b8da4 138240 / 115315 21c00 / 1c273 2 02 6 6.144 ASCLK 1 36.864 1805732 1b8da4 138240 / 115315 21c00 / 1c273 3 03 8 4.608 ASCLK Datasheet SAA7115 CVIP2 64 1 36.864 1805732 1b8da4 138240 / 115315 21c00 / 1c273 5 05 12 3.072 ASCLK 48 1 36.864 1805732 1b8da4 138240 / 115315 21c00 / 1c273 7 07 16 2.304 ASCLK 32 1 36.864 1805732 1b8da4 138240 / 115315 21c00 / 1c273 11 0B 24 1.536 ASCLK fs = 44.1 KHz 512 0 22.5792 1474681 168079 112896 / 94174 1b900 / 16fde 1f020 / 19dda na. 0 na. 00 na. 2 22.5792 AMCLK ASCLK 384 1 33.8688 1659016 195088 127008 / 105946 16.9344 Version: 256 0 22.5792 1474681 168079 112896 / 94174 1b900 / 16fde 1f020 / 19dda 1f020 / 19dda 0 00 2 11.2896 8.4672 ASCLK Date: 192 1 33.8688 1659016 195088 127008 / 105946 1 01 4 ASCLK 128 1 33.8688 1659016 195088 127008 / 105946 2 02 6 5.6448 ASCLK 10/23/01 0.67
CS-PD Hamburg
Philips Semiconductors
Last edited by H. Lambers
ACNI CGCDIV n * fs [bin] 96 1 AMCLK Freq. [MHz] [dec] [hex] 625 / 525 [dec]
ACPF [hex]
SDIV [dec] 3 [hex] 03 AMXCLK / ASCLK Ratio 8
Audio Clock [MHz] Output pin (AMCLK / ASCLK) ASCLK
Filename: SAA7115_Datasheet.fm
Confidential - NDA required page 88
yd re ar ni iu im eq lr e rA P D N
33.8688 1659016 195088 127008 / 105946 1f020 / 19dda 4.2336 64 1 33.8688 1659016 195088 127008 / 105946 1f020 / 19dda 6 06 12 2.8224 ASCLK 48 1 33.8688 1659016 195088 127008 / 105946 1f020 / 19dda 7 07 14 2.1168 ASCLK 32 1 33.8688 1659016 195088 127008 / 105946 1f020 / 19dda 11 0b 24 1.4112 ASCLK fs = 32 KHz 512 1 32.768 1605095 187de7 122880 / 102502 1e000 / 19066 0 00 2 16.384 ASCLK 384 0 24.576 1605095 187de7 122880 / 102502 1e000 / 19066 0 00 2 12.288 8.192 ASCLK Datasheet SAA7115 CVIP2 256 1 32.768 1605095 187de7 122880 / 102502 1e000 / 19066 21c00 / 1c273 1 01 4 ASCLK 192 1 36.864 1805732 1b8da4 138240 / 115315 2 02 6 6.144 ASCLK 128 96 0 24.576 1605095 187de7 122880 / 102502 1e000 / 19066 21c00 / 1c273 2 02 6 4.096 ASCLK 1 36.864 1805732 1b8da4 138240 / 115315 5 05 12 3.072 ASCLK 64 1 36.864 1805732 1b8da4 138240 / 115315 21c00 / 1c273 8 08 18 2.048 ASCLK 48 1 36.864 1805732 1b8da4 138240 / 115315 21c00 / 1c273 11 0b 24 1.536 ASCLK Version: 32 1 36.864 1805732 1b8da4 138240 / 115315 21c00 / 1c273 17 11 36 1.024 ASCLK Date: 10/23/01 0.67
CS-PD Hamburg
Philips Semiconductors
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
8.7.3
OTHER CONTROL SIGNALS FOR AUDIO CLOCK GENERATION
Further control signals are available to define reference clock edges and vertical references:
Pr eli ND m A ina req ry uir ed
0: PLL closed 1: PLL open 0: internal V AMVR[3AH[2]]; Audio Master clock Vertical Reference: 1: external V LRPH[3AH[1]]; ALRCLK Phase 0: invert ASCLK, ALRCLK edges triggered by falling edge of ASCLK 1: don't invert ASCLK, ALRCLK edges triggered by rising edge of ASCLK 0: invert AMXCLK, ASCLK edges triggered by falling edge of AMXCLK SCPH[3AH[0]]; ASCLK Phase: 1: don't invert AMXCLK, ASCLK edges triggered by rising edge of AMXCLK. Confidential - NDA required page 89
Filename: SAA7115_Datasheet.fm
APLL[3AH[3]]; Audio PLL mode:
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
9
INPUT/OUTPUT INTERFACES AND PORTS
The SAA7115 has 5 different I/O interfaces:
Pr eli ND m A ina req ry uir ed
* Audio clock port * Digital real-time signal port (RT port) * Digital video expansion port (X-port), for unscaled digital video input and output * Digital image port (I-port) for scaled video data output and programming * Digital host port (H-port) for extension of the image port (output mode) or expansion port (input mode) from 8 to 16-bit. 9.1 Analog terminals The SAA7115 has 6 analog inputs AI21 to AI24 and AI11 to AI12 for composite video CVBS or S-video Y/C signal pairs. Additionally, there are two differential reference inputs, which must be connected to ground via a capacitor equivalent to the decoupling capacitors at the 6 inputs. Per connected input there are no peripheral components required other than a decoupling capacitor of 47nF directly connected to the analog device inputs pins), an 18 (connected in series directly to the source) and 56 (connected between the capacitor and the 18 resistor to ground) termination resistor. Two anti-alias filters are integrated. Clamp and gain control for the ADCs are also integrated. An analog video output (pin AOUT) is provided for testing purposes. Table 32 Analog pin description SYMBOL PIN I/O I DESCRIPTION BIT AI11 and AI12 20, 18 AI21, AI22, AI23 and AI24 16, 14, 12, 10 22 analog video signal inputs, e.g. six CVBS signals or two Y/C plus two CVBS pairs signal groups can be connected simultaneously to this device; several combinations are possible; see table 54. analog video output, for test purposes MODE3 to MODE0 (02H[3:0]) AOUT O I AOSL2 to AOSL0 (01H[7], 14H[5:4]) - AI1D, AI2D 19, 13 analog reference pins for differential ADC operation; connect to ground via 47 nF 9.2 Audio clock signals The SAA7115 also synchronizes the audio clock and sampling rate to the video frame rate, via a very slow PLL. This ensures that the multimedia capture and compression processes always gather the same predefined number of samples per video frame. There are two basic modes as described in chapter 8.7 . Depending on these modes the signals AMCLK, ASCLK and ALRCLK are generated (Note: To generate ASCLK and ALRCLK the Audio Master clock AMCLK must be fed back into the device via the AMXCLK pin.). * Generating a frame locked Audio Master clock without using the second analog PLL (CGC2): - AMCLK: is the audio clock. - ASCLK: can be used as audio serial clock. - ALRCLK: audio left/right channel clock. * Generating a low jitter frame locked Audio Master clock supported by the second analog PLL (CGC2): - AMCLK: is the audio clock for 512*fs (fs = 48KHz or 44.1KHz). Confidential - NDA required page 90
Filename: SAA7115_Datasheet.fm
* Analog video input interface, for analog CVBS and/or Y and C input signals
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
- ASCLK: is the audio clock for all other audio clock frequencies. The ratios are programmable; see also chapter 8.7.
Pr eli ND m A ina req ry uir ed
Table 33 Audio clock pin description SYMBOL PIN 37 I/O O DESCRIPTION BIT AMCLK Audio master clock output without use of CGC2 ACPF[17:0] (32H[1:0] 31H[7:0] 30H[7:0]), ACNI[21:0] (36H[5:0] 35H[7:0] 34H[7:0]), AMVR (3AH[2]), APLL (3AH[3]), UCGC (3AH[3]; must be set to 0) Audio master clock output using of CGC2 (low jitter audio clock) ACPF[17:0] (32H[1:0] 31H[7:0] 30H[7:0]), ACNI[21:0] (36H[5:0] 35H[7:0] 34H[7:0]), AMVR (3AH[2]), APLL (3AH[3]), UCGC (3AH[3]; must be set to 1), CGCDIV (3AH[6]) - AMXCLK 41 I External audio master clock input for the clock division circuit, can be directly connected to output AMCLK for standard applications ASCLK 39 40 O O Serial audio clock output, can be synchronized to rising or falling edge of AMXCLK Audio channel (left/right) clock output, can be synchronized to rising or falling edge of ASCLK. SDIV[5:0] (38H[5:0]), SCPH (3AH[0]), ALRCLK LRDIV[5:0] (39H[5:0]), LRPH(3AH[1]) I Strapping during reset determines the crystal oscillator frequency to be used. 9.3 Clock and real-time synchronization signals For the generation of the line-locked video (pixel) clock LLC, and of the frame-locked audio serial bit clock, a crystal accurate frequency reference is required. An oscillator is built-in for fundamental or third harmonic crystals. The supported crystal frequencies are 32.11 MHz and 24.576 MHz (defined during reset by strapping pin ALRCLK). Alternatively pin XTALI can be driven from an external single-ended oscillator. The crystal oscillation can be propagated as a clock to other ICs in the system via pin XTOUT. The Line-Locked Clock (LLC) is the double pixel clock of nominal 27 MHz. It is locked to the selected video input, generating baseband video pixels according to "ITU recommendation 601". In order to support interfacing circuits, a direct pixel clock (LLC2) is also provided. The pins for line and field timing reference signals are RTCO, RTS1 and RTS0. Various real-time status information can be selected for the RTS pins. The signals are always available (output) and reflect the synchronization operation of the decoder part in the SAA7115. The function of the RTS1 and RTS0 pins can be defined by bits RTSE1[3:0] 12H[7:4] and RTSE0[3:0] 12H[3:0]. Confidential - NDA required page 91
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 34 Clock and real-time synchronization signals SYMBOL PIN I/O DESCRIPTION BIT - -
Pr eli ND m A ina req ry uir ed
Crystal oscillator XTALI 7 XTALO 6 4 I input for crystal oscillator or reference clock O O output of crystal oscillator XTOUT reference (crystal) clock output drive (optional) XTOUTE (14H[3]) - Real-time signals (RT port) LLC 28 O line-locked clock, nominal 27 MHz, double pixel clock locked to the selected video input signal, for backward compatibility only, do not use for new applications LLC2 29 O line-locked pixel clock, nominal 13.5 MHz, for backward compatibility only, do not use for new applications - RTCO 36 O real-time control output, transfers real-time status information supporting RTC level 3.1 (see document "RTC Functional Description", available on request) Strapping during reset determines the I2C read/write addresses address. - I RTS0 RTS1 34 35 O O real-time status information line 0, can be programmed to carry various RTSE0[3:0] real-time information (see Table 70) (12H[3:0]) real-time status information line 1, can be programmed to carry various RTSE1[3:0] real-time information (see Table 71) (12H[7:4]) 9.4 Video expansion port (X-port) The expansion port can be used either to output eight or ten bit video from the combfilter decoder directly or to receive video data from other external digital video sources such as MPEG decoder for output at the image port (I-port) whilst. The expansion port consists of three main groupings of signals: * 8-bit dithered or 10-bit data output of component video Y-CB-CR 4 : 2 : 2, i.e. in CB-Y-CR-Y, sequence. In 10-bit wide video mode the two data LSB's are output on the XRH and XRV signal lines. Exceptionally raw video samples (e.g. ADC test). * 8-bit data input of component video Y-CB-CR 4 : 2 : 2, i.e. CB-Y-CR-Y, byte serial. In input mode optionally the data bus can be extended to 16-bit by pins HPD7 to HPD0. In this mode XPD [7:0] carries the luminance data and HPD [7:0] carries the Chrominance data. * Clock, synchronization and auxiliary I/O signals, accompanying the data stream. The data transfers through the expansion port represent a single D1 port, with half duplex mode. The SAV and EAV codes may be inserted optionally for data input (controlled by bit XCODE (92H[3])). The input/output direction is switched for complete fields only. Confidential - NDA required page 92
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 35 Signals dedicated to the expansion port SYMBOL XPD7 to XPD0 PIN 81, 82, 84 -87, 89, 90 I/O I/O DESCRIPTION X-port data: in output mode controlled by decoder section, data format see Table 36; in input mode Y-CB-CR 4 : 2 : 2 serial input data or luminance part of a 16-bit Y-CB-CR 4 : 2 : 2 data stream BIT OFTS[3:0] (1BH[4], 13H[2:0]), CONLV (91H[7], C1H[7]), HLDFV (91H[6], C1H[6]), SCSRC[1:0] (91H[5:4], C1H[5:4]), SCRQE (91H[3], C1H[3]), FSC[2:0] (91H[2:0], C1H[2:0]) ICKS[3:0] (80H[3:0]), SCSRC[1:0] (91H[5:4], C1H[5:4])
Pr eli ND m A ina req ry uir ed
HPD7 to HPD0 64 -67, 69 - 72 94 I/(O) With the X-port, these signals are used as input only, for 16-bit Y-CB-CR 4 : 2 : 2 video data. In this case HPD[7:0] carries chrominance data. I/O XCLK clock at expansion port: if output, then copy of LLC; XCKS (92H[0], C2H[0]) as input normally a double pixel clock of up to 32 MHz or a gated clock (clock gated with a qualifier) data valid flag of the expansion port input (qualifier): if output, then decoder (HREF and VGATE) gate (see Fig.24) data request flag = ready to receive, to work with optional buffer in external device, to prevent internal buffer overflow; second function: input related task flag A/B - XDQ 95 I/O XRDY 96 O XRQT (83H[2]) XRH 92 I/O horizontal reference signal for the X-port: as output: HREF or HS from the decoder (see Fig.24) or bit 1 of D1 decoder 10 bit output; as input: a reference edge for horizontal input timing and a polarity for input field ID detection can be defined vertical reference signal for the X-port: as output: V123 or field ID from the decoder, see Figs 22 and or 23 or bit 0 of D1 decoder 10 bit output; as input: a reference edge for vertical input timing and for input field ID detection can be defined port control: switches X-port input 3-state XRHS (13H[6]), XFDH (92H[6], C2H[6]), XDH (92H[2], C2H[2]] XRV 91 I/O XRVS[1:0] (13H[5:4]), XFDV (92H[7], C2H[7]), XDV[1:0] (92H[5:4], C2H[5:4]) XTRI 80 I XPE[1:0] (83H[1:0]) Confidential - NDA required page 93
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
9.4.1
X-PORT CONFIGURED AS OUTPUT
Pr eli ND m A ina req ry uir ed
Some details of data types on the expansion port are as follows: * Active video (data types 0 and 15): contains component Y-CB-CR 4 : 2 : 2 signal, 720 active pixels per line. The amplitude and offsets are programmable via DBRI7 to DBRI0, DCON7 to DCON0, DSAT7 to DSAT0, OFFU1, OFFU0, OFFV1 and OFFV0. For nominal levels see Fig.18. * Test line (data type 14): is similar to the active video format, with some constraints within the data processing: - adaptive chrominance comb filter, vertical filter (chrominance comb filter for NTSC standards, PAL phase error correction) within the chrominance processing are disabled - adaptive luminance comb filter, peaking and chrominance trap are bypassed within the luminance processing This data type is defined for future enhancements. It could be activated for lines containing standard test signals within the vertical blanking period. Currently the most sources do not contain test lines. For nominal levels see Fig.18. * Raw samples (data types 1 to 13): CB-CR samples are similar to data type 6, but CVBS samples are transferred instead of processed luminance samples within the Y time slots. The amplitude and offset of the CVBS signal is programmable via RAWG7 to RAWG0 and RAWO7 to RAWO0; see Chapter 16, Tables 78 and 79. For nominal levels see Fig.19. The relationship of LCR programming to line numbers is described in Section 8.4, see Tables 7 to 10. The data type selections by LCR are overruled by setting OFTS[3:0] = 1110 (ADC1 bypass mode) or OFTS[3:0] = 1111 (ADC2 bypass mode) at subaddresses 1BH, bit 4 and 13H bit 2 to 0. This setting is mainly intended for device production test. The X-port (XPD[7:0]) carries the upper 8 bits of either of the two ADCs, the LSB is provided on pin XRH; see Table 72 "RT / X-port output control (SA 13, SA 1B)". The analog input configuration is done via MODE[3:0] 02H[3:0] settings; see table 53 "Analog control 1 (SA 02)". No timing reference codes are generated in this mode. The SAV/EAV timing reference codes define the start and end of valid data regions. The ITU-blanking code sequence `- 80 - 10 - 80 - 10 -...' is transmitted during the horizontal blanking period between EAV and SAV. The position of the F-bit is constant in accordance with ITU 656; see Tables 38 and 39. The V-bit can be generated in two different ways (see Tables 38 and 39) controlled via OFTS1 and OFTS0; see Table 72. In case of enabling 10-bit video output mode via OFTS[3:0] then XPD[7:0] carries the video data bits 9 to 2 and SAV/EAV codes and the signals XRH and XRV the data LSBs 1 and 0 respectively. During blanking both LSBs are zero. The F and V bits change synchronously with the EAV code. Table 36 Data format on the expansion port BLANKING PERIOD ... 80 TIMING REFERENCE CODE (HEX)(1) 720 PIXELS Y-CB-CR 4 : 2 : 2 DATA(2) CR71 8 TIMING REFERENCE CODE (HEX)(1) BLANKING PERIOD 10 ... 10 FF 00 00 SAV CB Y0 CR Y1 CB Y2 ... 0 0 2 Y719 FF 00 00 EAV 80 Notes 1. The generation of the timing reference codes and the ITU-blanking code sequence can be suppressed by setting OFTS[3:0] to `x010', see Table 72. 2. If raw samples or sliced data are selected by the line control registers (LCR2 to LCR24), the Y samples are replaced by CVBS samples. Confidential - NDA required page 94
Filename: SAA7115_Datasheet.fm
If data output is enabled at the expansion port, then the data stream from the decoder is presented. The data format of the 8-bit data bus is dependent on the chosen data type, selectable by the line control registers LCR2 to LCR24; see Table 6. In contrast to the image port, the sliced data format is not available on the expansion port. Instead, raw CVBS samples are always transferred if any sliced data type is selected.
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 37 Format of the control byte of SAV/EAV codes on expansion port XPD7 to XPD0 BIT 7 1 field bit BIT 6 (F) BIT 5 (V) BIT 4 (H) BIT 3 BIT 2 BIT 1 BIT 0 (P3) (P2) (P1) (P0)
Pr eli ND m A ina req ry uir ed
vertical blanking bit VBI: V = 1 format 1st field: F = 0 H = 0 in SAV format H = 1 in EAV format 2nd field: F = 1 active video: V = 0 reserved; evaluation not recommended (protection bits according to ITU 656) for vertical timing see Tables 38 and 39 Table 38 525 lines/60 Hz vertical timing V LINE NUMBER 1 to 3 20 21 F (ITU 656) 1 OFTS[3:0] = 0000 OR OFTS[3:0] = 1000 (ITU 656) 1 1 OFTS[3:0] = 0001 OR OFTS[3:0] = 1001 4 to 19 0 0 0 0 0 according to selected VGATE position type via VSTA and VSTO (subaddresses 15H to 17H); see Tables 75 to 76 22 to 261 262 263 0 0 0 0 0 0 264 and 265 266 to 282 283 284 525 0 1 1 1 1 1 1 0 0 0 285 to 524 1 0 Table 39 625 lines/50 Hz vertical timing V LINE NUMBER 1 to 22 23 F (ITU 656) 0 OFTS[3:0] = 0000 OR OFTS[3:0] = 1000 (ITU 656) 1 0 OFTS[3:0] = 0001 OR OFTS[3:0] = 1001 0 24 to 309 310 0 0 0 1 0 0 according to selected VGATE position type via VSTA and VSTO (subaddresses 15H to 17H); see Tables 75 to 76 311 and 312 313 to 335 336 623 337 to 622 1 1 1 0 1 1 0 0 624 and 625 1 1 Confidential - NDA required page 95
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
9.4.2
X-PORT CONFIGURED AS INPUT
Pr eli ND m A ina req ry uir ed
XRH and XRV carry the horizontal and vertical synchronization signals for the digital video stream through the expansion port. The field ID of the input video stream is carried in the phase (edge) of XRV and state of XRH, or directly as FS (frame sync, odd/even signal) on the XRV pin (controlled by XFDV (92H[7], C2H[7[), XFDH (92H[6], C2H[6]) and XDV[1:0] (92H[5:4], C2H[5:4])). The trigger events on XRH (rising/falling edge) and XRV (rising/falling/both edges) for the scalers acquisition window are defined by XDV[1:0] and XDH (92H[2], C2H[2]). The signal polarity of the qualifier can also be defined (bit XDQ (92H[1], C2H[1])). Alternatively to a qualifier, the input clock can be applied to a gated clock (means clock gated with a data qualifier, controlled by bit XCKS (92H[0], C2H[0])). In this case, all input data will be qualified. In case if 16 bit wide data input is required for the X-port input then the HPD[7:0] port is enabled for input via SCSRC[1:0] (91H[5:4], C1H[5:4]) whilst the I-port must be set to 8-bit output mode by ICKS[3:0] (80H[3:0]). 9.5 Image port (I-port) The image port transfers data from the scaler as well as from the VBI-data slicer, if selected (maximum 33 MHz). The reference clock is available at the ICLK pin, as an output, or as an input (maximum 33 MHz). As output, ICLK is derived either from the line-locked decoder or from the expansion port input clock or from PLL2/CGC2 combination, which enables square pixel clock generation feature. The data stream from the scaler output is usually discontinuous, which basically depends on the scale ratio. Therefore valid data during a clock cycle is accompanied by a data qualifying (data valid) flag on pin IDQ. For pin constrained applications the IDQ pin can be programmed to function as a gated clock output (bit ICKS2[80H[2]]). The pulsegenerator allows however to squeeze all pixels of a video line so that a continuous video stream at the I-port output is obtained. For details refer to chapter 8.2.. The data formats at the image port are defined in Dwords of 32 bits (4 bytes), such as the related FIFO structures. However the physical data stream at the image port is only 16-bit or 8-bit wide; in 16-bit mode data pins HPD7 to HPD0 are used for chrominance data. The four bytes of the Dwords are serialized in words or bytes. Available formats are as follows: * Y-CB-CR 4 : 2 : 2 * Y-CB-CR 4 : 1 : 1 * Raw samples * Decoded VBI-data. For handshake with the receiving VGA controller, or other memory or bus interface circuitry, F, H and V reference signals and programmable FIFO flags are provided. The information is provided on pins IGP0, IGP1, IGPH and IGPV. The functionality on these pins is controlled via subaddresses 84H and 85H. VBI-data is collected over an entire line in its own FIFO, and transferred as an uninterrupted block of bytes. Decoded VBI-data can be indicated by the VBI flag on pin IGP0 or IGP1. As scaled video data and decoded VBI-data may come from different and asynchronous sources, an arbitration scheme is needed. Normally the VBI-data slicer has priority. The image port consists of the pins and/or signals, as listed in Table 40. Confidential - NDA required page 96
Filename: SAA7115_Datasheet.fm
If data input mode is selected at the expansion port, then the scaler can choose its input data stream from the on-chip video decoder, or from the expansion port (controlled by bit SCSRC[1:0] (91H[5:4]), C1H[5:4])). Byte serial Y-CB-CR 4 : 2 : 2, or subsets for other sampling schemes, or raw samples from an external ADC may be input (see also bits FSC[2:0] (91H[2:0], C1H[2:0])). The input stream must be accompanied by an external clock (XCLK), qualifier XDQ and reference signals XRH and XRV. Instead of the reference signal, embedded SAV and EAV codes according to ITU 656 are also accepted. The protection bits are not evaluated.
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Pr eli ND m A ina req ry uir ed
In the case of scaling and for CMOD [80[7]] = `0', the following deviations from "ITU 656 recommendation" are implemented at the SAA7115s image port interface: * SAV and EAV codes are only present in those lines, where data is to be transferred, i.e. active video lines, or VBI raw samples, no codes for empty lines (=lines not covered by the scalers window definition) * There may be more or less than 720 pixels between SAV and EAV depending on the scaler settings * Data content and the number of clock cycles during horizontal and vertical blanking is undefined, and may not be constant. To get a regular pattern in case of scaling, the internal trigger positions for data packing (see section 8.5.4.2.) need to be balanced. * Data stream may be interleaved with not-valid data, 00H codes or old data (see bit INS80 [93[6]]), but SAV and EAV 4-byte codes are not interleaved with not-valid data codes * There may be an irregular pattern of not-valid data, or IDQ, and as a result, CB-Y-CR-Y is not in a fixed phase to a regular clock divider * VBI raw sample streams are enveloped with SAV and EAV, like normal video * Decoded VBI-data is transported as Ancillary (ANC) data or enveloped with SAV and EAV (see bits SLDOM [5D[4:0]]), two modes: - recoded VBI-data bytes (8-bit), 00H and FFH codes will be recoded to even parity codes 03H and FCH to suppress invalid ITU-R BT.656 codes. - direct decoded VBI-data bytes (8-bit), 00H and FFH codes may appear in the data block (violation to ITU-R BT.656) Sliced VBI data are transferred as continuous packages with no empty cycles. The data codes 00H and FFH are suppressed (changed to 01H or FEH respectively) in the active video stream, as well as in the VBI raw sample stream (VBI pass-through). Optionally, the number range can be further limited (see bit ILLV [85[5]]). If the video data are not packed and ITRDY = `1', due to the internal 32 bit wide backend FIFO, valid data occur as 4 byte (8 bit output), respec. 2 byte (16 bit output) packages of valid data. Confidential - NDA required page 97
Filename: SAA7115_Datasheet.fm
For pin constrained applications, or interfaces, the relevant timing and data reference signals can also be encoded into the data stream. Therefore the corresponding signal pins do not need to be connected. The minimum image port configuration requires 9 pins only, i.e. 8 pins for data including codes, and 1 pin for clock or gated clock. The inserted codes are defined in close relationship to the ITU-R BT.656 (D1) recommendation, where possible.
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 40 Signals dedicated to the image port SYMBOL IPD7 to IPD0 PIN 54 -57, 59 -62 I/O I/O I-port data DESCRIPTION BIT ICODE (93H[7], C3H(7)), ISWP[1:0] (85H[7:6]), IPE[1:0] (87H[1:0])
Pr eli ND m A ina req ry uir ed
HPD7 to HPD0 64 -67, 69 - 72 45 (I)/O With the I-port, these signals are used as output only, for 16-bit Y-CB-CR 4 : 2 : 2 video data. In this case HPD[7:0] carries chrominance data. ICKS[3:0] (80H[3:0]), SCSRC[1:0] (91H[5:4], C1H[5:4]), IPE[1:0] (87H[1:0]) ICLK I/O continuous reference clock at image port, can be input or output, as output decoder LLC or XCLK from X-port data valid flag at image port, qualifier, with programmable polarity; secondary function: gated clock ICKS[3:0] (80H[3:0]), IPE[1:0] (87H[1:0]) ICKS[3:0] (80H[3:0]), IPE[1:0] (87H[1:0]) IDQP[85H[0]] IDH[1:0] (84H[1:0]), IRHP(85H[1]), IPE[1:0] 87H[1:0] IDV[1:0] 84H[3:2], IRVP (85H[2]), IPE[1:0] (87H[1:0]) IDQ 46 O IGPH 53 O horizontal reference output signal, copy of the H-gate signal of the scaler, with programmable polarity; alternative function: HRESET pulse vertical reference output signal, copy of the V-gate signal of the scaler, with programmable polarity; alternative function: VRESET pulse general purpose output signal for I-port IGPV 52 O IGP1 49 O IDG12 (86H[4]), IDG1[1:0] (84H[5:4]), IG1P (85H[3]), IPE[1:0] (87H[1:0]) IDG02 (86H[5]), IDG0[1:0] (84H[7:6]), IG0P (85H[4]), IPE[1:0] (87H[1:0]) - IPE[1:0] (87H[1:0]) IGP0 48 O general purpose output signal for I-port ITRDY ITRI 42 I target ready input signals 47 I port control, switches I-port into 3-state 9.6 Host port for 16-bit extension of video data I/O (H-port) The H-port pins HPD can be used for extension of the data I/O paths to 16-bit. For the X-port HPD[7:0] are used as 16-bit input extension where as the I-port uses HPD[7:0] as 16-bit output extension. The I-port has functional priority. If a 16 bit output mode is set via ICKS[3:2], see table 121 "I-port and scaler backend clock selection (SA 80)" the output drivers of the H-port are enabled depending on the I-port enable control. Confidential - NDA required page 98
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 41 Signals dedicated to the host port SYMBOL HPD7 to HPD0 PIN 64 -67, 69 - 72 I/O DESCRIPTION BIT ICKS[3:0] (80H[3:0]), SCSRC[1:0] (91H[5:4], C1H[5:4]), IPE[1:0] (87H[1:0]), ITRI ([8FH[6])
Pr eli ND m A ina req ry uir ed
(I)/O With the I-port, these signals are used as output only, for 16-bit Y-CB-CR 4 : 2 : 2 video data. In this case HPD[7:0] carries chrominance data. 9.7 Basic input and output timing diagrams I-port and X-port I-PORT OUTPUT TIMING 9.7.1 The following diagrams (figures 33 to 39) illustrate the output timing via the I-port. IGPH and the scalers IGPV are logic 1 active gate signals. If reference pulses are programmed, these pulses are generated on the rising edge of the logic 1 active gates. Valid data is accompanied by the output data qualifier on pin IDQ. An data request via ITRDY = `1' is answered with the next clock cycle by marking this cycle as valid or invalid data. Due to the scaling and the output processing, it may last several ITRDY = `1' cycles, before a request is answered with valid data. After running in and if the requested data rate is matched to the scaled data rate, valid data are normally provided with the next clock cycle. The behaviour during invalid clock cycles depend on the INS80 bit and the ITRDY input. For INS80 = `0' the value 00H is inserted on IPD[7:0], resp. HPD[7:0], for all clock cycles marked with IDQ = `0' For INS80 = `1' data are hold during a line, if ITRDY ='0' or IDQ='0'. Outside the active line and in 8 bit output mode, the inserted blanking values (`80H', `10H') change with every ITRDY = `1'. As there are now internal counters for data packing implemented (see sect. 8.5.4.2 and parameters PGHAPS, PGHBPS and PGHCPS), the ITRDY packing is mainly useful for burst data transfers. The IDQ output pin may be defined to be a gated clock output signal (ICLK AND internal IDQ). 9.7.2 X-PORT INPUT TIMING At the X-port the input timing requirements are the same as those for the I-port output. But different to those below: * It is not necessary to mark invalid cycles with a 00H code * XCLK may be a gated clock (XCLK AND external XDQ). * No constraints on the input qualifier (can be a random pattern) Remark: All timings illustrated in figures 33 to 39 are given for an uninterrupted output stream (no handshake with the external hardware). Confidential - NDA required page 99
Filename: SAA7115_Datasheet.fm
I/(O) With the X-port, these signals are used as input only, for 16-bit Y-CB-CR 4 : 2 : 2 video data. In this case HPD[7:0] carries chrominance data.
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Pr eli ND m A ina req ry uir ed
ICLK IDQ IPD[7:0] 00 IGPH FF 00 00 SAV 00 Cb Y Cr Y 00 Cb Cr Y FF 00 00 EAV 00
Fig.33 Output Timing I-port for serial 8 Bit Data (ICODE = 1, INS80 = 0)
ICLK
IDQ
IPD[7:0] IGPH
00
Cb
Y
Cr
Y
00
Cb
Cr
Y
00
Fig.34 Output Timing I-port for serial 8 Bit Data (ICODE = 0, INS80 = 0)
Confidential - NDA required
page 100
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Pr eli ND m A ina req ry uir ed
ICLK IDQ IPD[7:0] 10(80) IGPH FF 00 00 SAV Cb Y Cr Y Cb Cr Y FF 00 00 EAV 80 10
Fig.35 Output Timing I-port for serial 8 Bit Data (ICODE = 1, INS80 = 1)
ICLK
r
r
r
r
r
r
r
r
r
r
ITRDY IDQ
nr
nr
nr
nr
nr
nr
nr
IGPH
h
p
p
h
h
h
p
p
h
p
h
p
h
p
h
p
IPD[7:0]
r
Y
Cr
Y
FF 00
00
EAV
80
10
= request new data
IDQ = 1 and IGPH = 0 = SAV or EAV sequence
nr = no request
p = new data are placed h = hold data
Fig.36 Output Timing I-port using the ITRDY pin (ICODE = 1)
Confidential - NDA required
page 101
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Pr eli ND m A ina req ry uir ed
ICLK IDQ IPD[7:0] 00 HPD[7:0] 00 IGPH FF 00 00 Y0 Y1 00 00 Y2 Y3 Yn-1 Yn 00 Cb Cr 00 FF 00 00 00 SAV 00 Cb Cr Cb Cr 00 EAV 00
Fig.37 Output Timing for 16 Bit Data output via I-port and H-port with codes (ICODE = 1, INS80 = 0), timing is like 8 bit output, but packages of 2 bytes per valid cycle
IDQ
IGPH
IGPV
Fig.38 the scalers H-gate and V-gate output timing
Confidential - NDA required
page 102
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Pr eli ND m A ina req ry uir ed
ICLK IDQ IPD[7:0] 10 00 00 FF FF DID SDID XX YY ZZ FF 00 00 SAV CS BC 80 10 80 10 BC FF 00 80 00 EAV
sliced data flag on IGP0 or IGP1 Fig.39 Output Timing for sliced VBI data in 8 Bit serial output mode (for INS80 = 1) Confidential - NDA required page 103
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
10 BOUNDARY SCAN TEST The SAA7115 has built-in logic and 5 dedicated pins to support boundary scan testing which allows board testing without special hardware (nails). The SAA7115 follows the "IEEE Std. 1149.1 - Standard Test Access Port and Boundary-Scan Architecture" set by the Joint Test Action Group (JTAG) chaired by Philips. The 5 special pins are Test Mode Select (TMS), Test Clock (TCK), Test Reset (TRSTN), Test Data Input (TDI) and Test Data Output (TDO).
Pr eli ND m A ina req ry uir ed
The Boundary Scan Test (BST) functions BYPASS, EXTEST, INTEST, SAMPLE, CLAMP and IDCODE are all supported (see Table 42). Details about the JTAG BST-TEST can be found in specification "IEEE Std. 1149.1". A file containing the detailed Boundary Scan Description Language (BSDL) description of the SAA7115 is available on request. Table 42 BST instructions supported by the SAA7115 INSTRUCTION BYPASS DESCRIPTION This mandatory instruction provides a minimum length serial path (1 bit) between TDI and TDO when no test operation of the component is required. This mandatory instruction allows testing of off-chip circuitry and board level interconnections. EXTEST SAMPLE This mandatory instruction can be used to take a sample of the inputs during normal operation of the component. It can also be used to preload data values into the latched outputs of the boundary scan register. This optional instruction is useful for testing when not all ICs have BST. This instruction addresses the bypass register while the boundary scan register is in external test mode. This optional instruction will provide information on the components manufacturer, part number and version number. CLAMP IDCODE INTEST USER1 This optional instruction allows testing of the internal logic (no customer support available). This private instruction allows testing by the manufacturer (no customer support available). 10.1 Initialization of boundary scan circuit The TAP (Test Access Port) controller of an IC should be in the reset state (TEST_LOGIC_RESET) when the IC is in functional mode. This reset state also forces the instruction register into a functional instruction such as IDCODE or BYPASS. To solve the power-up reset, the standard specifies that the TAP controller will be forced asynchronously to the TEST_LOGIC_RESET state by setting the TRSTN pin LOW. 10.2 Device identification codes A device identification register is specified in "IEEE Std. 1149.1b-1994". It is a 32-bit register which contains fields for the specification of the IC manufacturer, the IC part number and the IC version number. Its biggest advantage is the possibility to check for the correct ICs mounted after production and determination of the version number of ICs during field service. When the IDCODE instruction is loaded into the BST instruction register, the identification register will be connected between TDI and TDO of the IC. The identification register will load a component specific code during the CAPTURE_DATA_REGISTER state of the TAP controller and this code can subsequently be shifted out. At board level this code can be used to verify component manufacturer, type and version number. The device identification register contains 32 bits, numbered 31 to 0, where bit 31 is the most significant bit (nearest to TDI) and bit 0 is the least significant bit (nearest to TDO); see Fig.40. Confidential - NDA required page 104
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Pr eli ND m A ina req ry uir ed
handbook, full pagewidth
MSB
LSB
31
28 27
12 11
1
0
TDI
nnnn
0111 0001 0001 0101 0111000100011000
16-bit part number
00000010101
1
TDO
4-bit version code
11-bit manufacturer identification
MHB734
Fig.40 32 bits of identification code.
Confidential - NDA required
page 105
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
11 LIMITING VALUES Table 43 Limiting Values
Pr eli ND m A ina req ry uir ed
VDDx VIA supply voltage digital -0.5 -0.5 +4.6 +4.6 V V VDDAx supply voltage analog input voltage at analog inputs note 3 -0.5 VDDA + 0.5 (4.6 max) +5.5 V VOA VID output voltage at analog output -0.5 VDDA + 0.5 V input voltage at digital inputs outputs in tristate, note 2, 3 -0.5 V VOD output voltage at digital outputs outputs active -0.5 VDDx + 0.5 100 V VdiffGND Tstg difference voltage between VSSAall and VSSall storage temperature mV -65 0 +150 +70 C Tamb operating ambient temperature range C VESD electrostatic handling for all pins note 1 -2000 +2000 V Note 1. Equivalent to discharging a 100pF capacitor through an 1.5kW series resistor (Human Body Model) 2. With the exception of pin XTALI 3. The chip must be supplied correctly with at least the minimum supply voltage of 3.0V 12 THERMAL CHARACTERISTICS Table 44 Thermal characteristics SYMBOL PARAMETER CONDITIONS VALUE UNIT Rth(j-a) thermal resistance from junction to ambient in free air 52.5 K/W Confidential - NDA required page 106
Filename: SAA7115_Datasheet.fm
SYMBOL
PARAMETER
Conditions
MIN
MAX
UNIT
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
13 CHARACTERISTICS Table 45 Characteristics VDDD = 3.0 to 3.6 V; VDDA = 3.1 to 3.5 V; Tamb = 25 C; timings and levels refer to drawings and conditions illustrated in Fig.41; unless otherwise specified. SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Pr eli ND m A ina req ry uir ed
Supplies VDDD digital supply voltage digital supply current 3.0 3.3 3.6 - V IDDD PD X-port 3-state; 8-bit I-port - TBD. mA power dissipation digital part analog supply voltage analog supply current - tbd. 3.3 - mW V VDDA 3.1 3.5 IDDA AOSL1 and AOSL0 = 0 CVBS mode Y/C mode - - - - - - - - - tbd. tbd. tbd. tbd. tbd. tbd. tbd. tbd. - - - - - - - - mA mA mA component mode PA power dissipation analog part CVBS mode mW mW mW mW mW Y/C mode component mode CVBS mode Y/C mode Ptot(A+D) total power dissipation analog and digital part Ptot(A+D)(pd) total power CE pulled down to ground dissipation analog and digital part in power-down mode total power dissipation analog and digital part in power-save mode total power dissipation analog and digital part in power-save mode - mW TBD. Ptot(A+D)(ps) I2C-bus controlled via subaddress - 88H tbd. - mW Ptot(A+D)(ps) Controlled via chip enable input (CE, Pin 27) - tbd. - mW Analog part Iclamp Vi(p-p) clamping current input voltage (peak-to-peak value) VI = 1 V DC - 8 - A for normal video levels 1 V (p-p), -3 dB termination 18/56 and AC coupling required; coupling capacitor is 47 nF clamping current off - 0.7 - V Zi Ci cs input impedance 200 - - - k input capacitance channel crosstalk - - 10 pF fi < 5 MHz - -50 dB Confidential - NDA required page 107
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
SYMBOL
PARAMETER at -3 dB
CONDITIONS -
MIN.
TYP. - - -
MAX.
UNIT
9-bit analog-to-digital converters
Pr eli ND m A ina req ry uir ed
B analog bandwidth differential phase differential gain ADC clock frequency 7 2 2 - MHz diff amplifier plus anti-alias filter bypassed amplifier plus anti-alias filter bypassed - - deg % Gdiff fclk(ADC) LEdc(d) LEdc(i) 25.4 - - 28.6 - - MHz DC differential linearity error DC integral linearity error ADC gain inequality 0.7 1 3 LSB LSB GADC maximum deviation - 1 x 100 ------------------------------------------------- minimum deviation - - % note 1 Digital inputs VIL(SCL,SDA) LOW-level input voltage pins SDA and SCL HIGH-level input voltage pins SDA and SCL note 2 -0.5 - +0.3VDD(I2C) V VIH(SCL,SDA) note 2 0.7VDD(I2C) - VDD(I2C) + 0.5 V VIL(XTALI) LOW-level CMOS input voltage pin XTALI -0.3 - +0.8 V VIH(XTALI) HIGH-level CMOS input voltage pin XTALI LOW-level input voltage all other inputs 2.0 - VDDD + 0.3 V VIL(n) -0.3 - +0.8 V VIH(n) HIGH-level input voltage all other inputs input leakage current I/O leakage current 2.0 - 5.5 V ILI - - - - - - 1 A A pF ILI/O Ci 10 8 input capacitance I/O at high-impedance Digital outputs; note 3 VOL(SDA) LOW-level output voltage pin SDA SDA at 3 mA sink current - - 0.4 V VOL(clk) LOW-level output voltage for clocks -0.5 2.4 - - +0.6 V VOH(clk) HIGH-level output voltage for clocks VDDD + 0.5 V Confidential - NDA required page 108
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
SYMBOL VOL(n)
PARAMETER LOW-level output voltage all other digital outputs
CONDITIONS 0
MIN. -
TYP. 0.4
MAX.
UNIT V
Pr eli ND m A ina req ry uir ed
VOH(n) HIGH-level output voltage all other digital outputs 2.4 - VDDD + 0.5 V Clock output timing (LLC and LLC2); note 4 CL output load capacitance cycle time 15 - - - 50 pF Tcy pin LLC 35 39 78 ns ns % pin LLC2 70 duty factors tCLKH/Tcy CL = 40 pF 40 - - - - 60 tr rise time LLC and LLC2 fall time LLC and LLC2 0.2 V to VDDD - 0.2 V VDDD - 0.2 V to 0.2 V - - 5 ns ns tf 5 td(LLC-LLC2) delay time between LLC and LLC2 output measured at 1.5 V; CL = 25 pF tbd. tbd. ns Horizontal PLL fhor(n) nominal line frequency 50 Hz field - - 15625 15734 - - - Hz Hz % 60 Hz field fhor/fhor(n) permissible static deviation - 5.7 Subcarrier PLL fsc(n) nominal subcarrier PAL BGHI frequency NTSC M PAL M PAL N - - - - 4433619 - 3579545 - 3575612 - 3582056 - - - Hz Hz Hz Hz fsc lock-in range 400 - - Hz Crystal oscillator for 32.11 MHz; note 5 fxtal(nom) fxtal(nom) permissible nominal frequency deviation permissible nominal frequency deviation with temperature nominal frequency 3rd harmonic 32.11 - - MHz 70 x 10-6 fxtal(nom)(T) - - 30 x 10-6 CRYSTAL SPECIFICATION (X1) ambient temperature Tamb(X1) 0 - - 70 C CL load capacitance 8 - pF Confidential - NDA required page 109
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
SYMBOL Rs C1
PARAMETER series resonance resistor motional capacitance parallel capacitance
CONDITIONS - - -
MIN.
TYP. 40 80
MAX.
UNIT fF
Pr eli ND m A ina req ry uir ed
1.5 20% - 4.3 20% - C0 pF Crystal oscillator for 24.576 MHz; note 5 fxtal(n) fxtal(n) permissible nominal frequency deviation permissible nominal frequency deviation with temperature nominal frequency 3rd harmonic - - 24.576 - - MHz 50 x 10-6 fxtal(n)(T) - - 20 x 10-6 CRYSTAL SPECIFICATION (X1) ambient temperature Tamb(X1) 0 - - 70 C CL load capacitance 8 - pF Rs series resonance resistor motional capacitance parallel capacitance - - - 40 80 C1 1.5 20% - 3.5 20% - fF C0 pF Expansion port (X-Port) output timing with XCLK clock output Tcy CL cycle time XCLK output output load capacitance 35 - - 39 ns 15 50 pF % duty factors for tXCLKH/tXCLKL rise time fall time tbd. - tbd. tr 0.6 to 2.6 V - - - - tbd. tbd. ns ns tf 2.6 to 0.6 V Data and control signal output timing X-port including RT port, related to XCLK output (for XPCK[1:0] 83H[5:4] = 11); note 4 CL output load capacitance 15 - 50 - pF ns ns tOHD;DAT tPD output data hold time tbd. propagation delay from positive edge of XCLK output VALID FOR OUTPUTS: XPD [7:0], XRH, XRV, XDQ, RTS0, RTS1, RTCO tbd. Expansion port (X-Port) input timing with XCLK clock input TcyX XCLK cycle time XCLK input 31 - 45 ns Confidential - NDA required page 110
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
SYMBOL tr
PARAMETER duty factor: tXCLKH/Tcy rise time fall time
CONDITIONS
MIN. tbd. - -
TYP. 50 - - tbd. 5 5 -
MAX.
UNIT % ns ns
Pr eli ND m A ina req ry uir ed
tf Data and control signal input timing X-port, related to XCLK input (for XPCK[1:0] 83H[5:4] = 11); tSU;DAT input data set-up time input data hold time tbd. VALID FOR INPUTS: XPD [7:0], HPD [7:0], XRH, XRV, - XDQ tbd. ns ns ns ns tHD;DAT tbd. - tOHD;DAT tPD output data hold time propagation delay from positive edge of XCLK input VALID FOR OUTPUT: XRDY tbd. Image port (I-Port) output timing with ICLK clock output CL output load capacitance cycle time duty factor: tICLKH/tICLKL rise time fall time 15 - 50 pF ns % Tcy 31 - - 90 CL = 40 pF tbd. tbd. tr 0.6 to 2.6 V - - - - - 5 5 ns ns tf 2.6 to 0.6 V Data and control signal output timing I-port, related to ICLK output (for IPCK[1:0] 87H[5:4] = 11) CL output load capacitance at all outputs output data hold time 15 50 pF tOHD;DAT to(d) output delay time VALID FOR OUTPUTS: IPD [7:0], HPD [7:0], IGPH, IGPV, IDQ, IGP1, IGP0 tbd. - - ns ns 23 - Data and control signal input timing I-port, related to ICLK output (for IPCK[1:0] 83H[5:4] = 11); tSU;DAT input data set-up time input data hold time Valid for input: ITRDY 18 - ns ns tHD;DAT tbd. Image port (I-Port) output timing with ICLK clock input Tcy cycle time duty factors: tICLKH/Tcy rise time fall time 31 - 100 ns % tbd. 50 tbd. tr 0.6 to 2.6 V - - - - 5 5 ns ns tf 2.6 to 0.6 V Data and control signal output timing I-port, related to ICLK input (for IPCK[1:0] 87H[5:4] = 11) Confidential - NDA required page 111
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
SYMBOL CL
PARAMETER output load capacitance at all outputs output hold time
CONDITIONS 15
MIN. -
TYP. 50
MAX.
UNIT pF
Pr eli ND m A ina req ry uir ed
tOHD;DAT tPD propagation delay from positive edge of LLC output VALID FOR OUTPUTS: IPD [7:0], HPD [7:0], IGPH, IGPV, IDQ, IGP1, IGP0 tbd. - - ns ns tbd. Data and control signal input timing I-port, related to ICLK input (for IPCK[1:0] 83H[5:4] = 11); tSU;DAT input data set-up time input data hold time Valid for input: ITRDY tbd. - - ns ns tHD;DAT tbd. AMCLK clock output CL output load capacitance rise time fall time 15 - - - - - 50 5 5 pF tr tf 0.6 to 2.6 V ns ns 2.6 to 0.6 V Notes 1. ADC1 is not taken into account, since component video is always converted by ADC2, ADC3 and ADC4. 2. VDD(I2C) is the supply voltage of the I2C-bus. For VDD(I2C) = 3.3 V is VIL(SCL,SDA)(max) = 1 V; for VDD(I2C) = 5 V is VIL(SCL,SDA)(max) = 1.5 V. For VDD(I2C) = 3.3 V is VIH(SCL,SDA)(min) = 2.3 V; for VDD(I2C) = 5 V is VIH(SCL,SDA)(min) = 3.5 V. 3. The levels must be measured with load circuits; 1.2 k at 3 V (TTL load); CL = 50 pF. 4. The effects of rise and fall times are included in the calculation of tOHD;DAT and tPD. Timings and levels refer to drawings and conditions illustrated in Fig.41. 5. The crystal oscillator drive level is typical 0.28 mW. Confidential - NDA required page 112
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Pr eli ND m A ina req ry uir ed
handbook, full pagewidth
Tcy
t XCLKH
2.4 V 1.5 V 0.6 V
clock input XCLK
t SU;DAT
tf
tr
t HD;DAT
data and control inputs (X port)
2.0 V 0.8 V
not valid
t SU;DAT
t HD;DAT
2.0 V 0.8 V
input XDQ
t o(d)
t OHD;DAT
data and control outputs X port, I port
-2.4 V -0.6 V
t X(I)CLKH
t X(I)CLKL
clock outputs LLC, LLC2, XCLK, ICLK and ICLK input
-2.6 V -1.5 V -0.6 V
tf
tr
MHB735
Fig.41 Data input/output timing diagram (X-port, RT port and I-port).
Confidential - NDA required
page 113
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
L1
3V3D
CS-PD Hamburg
VDDD
HPD[0..7]
Ferrite
L2
3V3A
HPD[0..7]
VDDA
Ferrite
Philips Semiconductors
BST[0..2]
BST[0..2]
HPD0 HPD1 HPD2 HPD3 HPD4 HPD5 HPD6 HPD7
TDO TDI
1 25 51 75
23 17 11
33 43 58 68 83 93
72 71 70 69 67 66 65 64
98 99 97 3 2
8
77 78 79
31 32
22
Confidential - NDA required
3V3D
BST0 BST1 BST2
SCL SDA
U1
IPD[0..7]
VDDI VDDI VDDI VDDI VDDI VDDI
14 APPLICATION INFORMATION
VDDE VDDE VDDE VDDE
VXDD
TCK TMS TRSTN TDI TDO
AI23
R2 18R
C2
12 47nF
AI23
VDDA0 VDDA1 VDDA2
TEST3 TEST4 TEST5
AOUT
10 47nF
HPD0 HPD1 HPD2 HPD3 HPD4 HPD5 HPD6 HPD7
SCL SDA
R10 56R
R12 56R
R11 56R
R13 56R
R14 56R
R15 56R
CE
VSSA0 VSSA1 VSSA2 AGND
VXSS VSSE VSSI VSSE VSSI VSSE VSSI VSSE
LLC LLC2
RESON
RTS0 RTS1 RTCO TEST0 TEST1 TEST2
XPD7 XPD6 XPD5 XPD4 XPD3 XPD2 XPD1 XPD0
XRH XRV XRDY XDQ XCLK XTRI XTOUT
27
24 15 9 21
28 29
30
34 35 36 44 73 74
81 82 84 85 86 87 89 90
XPD7 XPD6 XPD5 XPD4 XPD3 XPD2 XPD1 XPD0
R21 4k7
XCON0 XCON1 XCON2 XCON3 XCON4 XCON5 XCON6
Date:
Version:
CP1 10F
C12 100nF
C13 100nF
C14 100nF
C15 100nF
C16 100nF
C17 100nF
C18 100nF
C19 100nF
C20 100nF
C21 100nF
C22 100nF
3k3
Fig.42 Application example
AGND
5 26 38 50 63 76 88 100
92 91 96 95 94 80 4
Filename: SAA7115_Datasheet.fm
C1 IPD[0..7] AI24 IPD7 IPD6 IPD5 IPD4 IPD3 IPD2 IPD1 IPD0 IMCON[0..7] 54 55 56 57 59 60 61 62 IPD7 IPD6 IPD5 IPD4 IPD3 IPD2 IPD1 IPD0 IMCON[0..7] C3 14 47nF AI22 ITRDY 42 IMCON7 C4 16 47nF AI21 C7 13 47nF AI2D
AI24
R1 18R
AI22
R3 18R
AI21
R4 18R
SAA7115HL
SAA7115HL
ICLK IDQ ITRI IGP0 IGP1 IGPV IGPH
45 46 47 48 49 52 53 IMCON6 IMCON5 IMCON4 IMCON3 IMCON2 IMCON1 IMCON0
AUDIO[0..3]
AGND
AUDIO[0..3]
AI12
R5 18R
C5
18 47nF
AI12
AMCLK ASCLK ALRCLK AMXCLK 6
37 39 40 41
AUDIO3 AUDIO2 AUDIO1 AUDIO0
R7 33R R8 33R R9 33R
CVIP2
AI11
R6 18R
C6
XTAL
20 47nF
AI11
32.11MHz
Y1
R16 0R R18 open
DGND
Datasheet SAA7115
XTALI
7
'Strapping' Clock Frequency DGND
C8
19 47nF
AI1D
SAA7115
AGND
L3 10H
C10 10pF
C11 10pF
C9
1nF
AGND
DGND
DGND
Connect to 3V3D or other Control-Signal
XPD[0..7]
XPD[0..7]
3V3D
RCON0 RCON1 RCON2
XCON[0..6]
XCON[0..6]
RCON[0..2]
RCON[0..2]
'Strapping' I2C Slave Address
RESN
3V3D
R19 open
3V3A
R20
R17 0R
C23 100nF
C24 100nF
C25 100nF
CP2 10F
DGND
AGND
10/23/01
Last edited by H. Lambers
0.67
Pr eli ND m A ina req ry uir ed
page 114
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
SAA7115 XTALI 7 XTALO 6 XTALI 7
SAA7115 XTALO 6 XTALI 7
SAA7115 XTALO 6
Pr eli ND m A ina req ry uir ed
32.11 MHz 32.11 MHz 32.11 MHz
4.7 H
15 pF 15 pF
39 pF 39 pF
15 pF 15 pF
1nF
(1a) With 3rd harmonic quartz. Crystal load = 8 pF
(1b) With fundamental quartz. Crystal load = 20 pF
(1c) With fundamental quartz. Crystal load = 8 pF
SAA7115
SAA7115
SAA7115
XTALI 7
XTALO 6
XTALI 7
XTALO 6
XTALI 7
XTALO 6
24.576 MHz
24.576 MHz
24.576 MHz
4.7 H
18 pF 18 pF
39 pF 39 pF
15 pF 15 pF
1nF
(2a) With 3rd harmonic quartz.
(2b) With fundamental quartz.
(2c) With fundamental quartz.
SAA7115
SAA7115
XTALI 7
XTALO 6
XTALI 7
XTALO 6
32.11 MHz or 24.576 MHz
Rs
n.c.
Clock
(3a) With direct clock
(3b) With fundamental quartz crystal and restricted drive level. When Pdrive of the internal oscillator is too high a resistance Rs can be placed in series with the output of the oscillator XTALO. Note: The decreased crystal amplitude results in a lower drive level but on the other hand the jitter performance will decrease.
Fig.43 Oscillator applications
Confidential - NDA required
page 115
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
15 DEVICE PROGRAMMING OVERVIEW 15.1 I2C-bus description
Pr eli ND m A ina req ry uir ed
S SLAVE ADDRESS W ACK-s SUBADDRESS ACK-s DATA ACK-s P data transferred (n bytes + acknowledge)
MHB339
a. Write procedure.
S
SLAVE ADDRESS W
ACK-s
SUBADDRESS DATA
ACK-s
Sr
SLAVE ADDRESS R
ACK-s
ACK-m
P
data transferred (n bytes + acknowledge)
MHB340
b. Read procedure (combined).
Fig.44 I2C-bus format.
Table 46 Description of I2C-bus format CODE
DESCRIPTION
S
START condition
Sr
repeated START condition
SLAVE ADDRESS W SLAVE ADDRESS R ACK-s ACK-m DATA P X
`0100 0010' (42H, default) or `0100 0000' (40H; note 1) `0100 0011' (43H, default) or `0100 0001' (41H; note 1)
acknowledge generated by the slave
acknowledge generated by the master
SUBADDRESS
subaddress byte; see Tables 47 and 48
data byte; see figure 44; if more than one byte DATA is transmitted the subaddress pointer is automatically incremented STOP condition read/write control bit (LSB slave address); X = 0, order to write (the circuit is slave receiver); X = 1, order to read (the circuit is slave transmitter)
Note
1. If pin RTCO strapped to supply voltage via a 4.7 k resistor.
Confidential - NDA required
page 116
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
15.2
Register Overview
Table 47 Subaddress description and access
Pr eli ND m A ina req ry uir ed
SUBADDRESS DESCRIPTION ACCESS (READ/WRITE) read only 00H chip version Video decoder: 01H to 2FH 01H to 05H 06H to 19H front-end part decoder part read and write read and write read only - 1AH to 1DH 1EH to 1FH 20H to 2FH color decoding, misc read and write video decoder status byte reserved Audio clock generation: 30H to 3FH 30H to 3AH 3BH to 3FH reserved audio clock generator read and write - General purpose VBI-data slicer: 40H to 7FH 40H to 5BH 5CH 5FH VBI-data slicer reserved reserved read and write - - 5DH to 5EH 60H to 65H VBI-data slicer read and write read only VBI-data slicer status 66H to 7FH I2C readback of sliced VBI data read only X-port, I-port, scaler and power save control: 80H to EFH 80H to 8FH task independent global settings task A definition task B definition 90H to BFH read and write read and write C0H to EFH read and write Second PLL (PLL2) and Pulsegenerator: F0H to FFH F0H to F4H Second PLL settings Pulsegenerator reserved F5H to FBH FFH read and write read and write FCH to FEH read and write Second PLL, lock status definition read and write Confidential - NDA required page 117
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 48 I2C-subaddress Overview(1) REGISTER FUNCTION SUB ADDR 00 D7 D6 D5 D4 D3 D2 D1 D0
Pr eli ND m A ina req ry uir ed
Register 00 to 2F used by chip version part Chip version (read only) ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 Registers 01 to 1F used by the video decoder part Increment Delay 01 AOSL2 02 FUSE1 TEST WPOFF FUSE0 GUDL1 0 GUDL0 0 IDEL3 IDEL2 IDEL1 IDEL0 Analog Input Control 1 Analog Input Control 2 MODE3 MODE2 GAFIX GAI12 GAI22 HSB2 HSS2 HPLL MODE1 GAI28 MODE0 GAI18 03 HLNRS GAI16 GAI26 HSB6 FSEL VBSL CPOFF GAI14 GAI24 HSB4 HSS4 HOLDG GAI13 GAI23 HSB3 HSS3 Analog Input Control 3 Analog Input Control 4 04 05 GAI17 GAI27 HSB7 GAI15 GAI25 HSB5 HSS5 LDEL GAI11 GAI21 HSB1 HSS1 GAI10 GAI20 HSB0 HSS0 Horizontal sync start Horizontal sync stop Sync Control Luminance Brightness adjustment Luminance Control 06 07 08 HSS7 HSS6 AUFD BYPS FOET HTC1 HTC0 VNOI1 LUFI1 DBRI1 VNOI0 LUFI0 DBRI0 09 YCOMB DBRI6 LUBW LUFI3 LUFI2 0A DBRI7 DBRI5 DBRI4 DBRI3 DBRI2 Luminance Contrast adjustment Chroma Saturation adjustment Chroma Control 1 0B DCON7 DSAT7 DCON6 DSAT6 DCON5 DSAT5 DCON4 DSAT4 DCON3 DSAT3 DCON2 DSAT2 DCON1 DSAT1 DCON0 DSAT0 0C 0D 0E 0F 10 Chroma Hue control HUEC7 CDTO ACGC HUEC6 CSTD2 HUEC5 CSTD1 HUEC4 CSTD0 HUEC3 DCVF HUEC2 FCTC HUEC1 AUTO0 HUEC0 CCOMB Chroma Gain Control CGAIN6 OFFU0 RTP1 CGAIN5 OFFV1 CGAIN4 OFFV0 CGAIN3 CHBW RTP0 CGAIN2 LCBW2 YDEL2 CGAIN1 LCBW1 YDEL1 CGAIN0 LCBW0 YDEL0 Chroma Control 2 RT signal Control OFFU1 COLO RTCE CM99 Mode/Delay Control RT / X-port output Control 11 12 HDEL1 HDEL0 RTSE13 RTSE12 XRHS RTSE11 XRVS1 AOSL1 VSTA5 RTSE10 XRVS0 AOSL0 VSTA4 RTSE03 HLSEL RTSE02 OFTS2 RTSE01 OFTS1 RTSE00 OFTS0 13 14 analog / ADC / compatibility control UPTCV VSTA6 XTOUTE VSTA3 AUTO1 VSTA2 APCK1 VSTA1 APCK0 VSTA0 VGATE start, FID change VGATE stop 15 VSTA7 16 VSTO7 VSTO6 VSTO5 VSTO4 VSTO3 VSTO2 VSTO1 VSTO0
(1) Colour codes in this table: - green: new or modified functionality (related to ALL previous decoder designs), - yellow: new or modified functionality already realized in SAA7118 (where SAA7115 is mainly derived from) - red: hidden functionality
Confidential - NDA required
page 118
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
REGISTER FUNCTION MISC / VGATE MSB's
SUB ADDR 17
D7 LLCE
D6 LLC2E
D5 LATY2
D4 LATY1
D3 LATY0
D2 VGPS
D1 VSTO8
D0 VSTA8
Pr eli ND m A ina req ry uir ed
Raw Data Gain 18
1A 1B
RAWG7 QTHR3 ATVT1 0
RAWG6 QTHR2 ATVT0 0
RAWG5 RAWO5 QTHR1 0 0
RAWG4 RAWO4 QTHR0 OFTS3 0
RAWG3 RAWO3 STHR3 0 0
RAWG2 RAWO2 STHR2 0 0
RAWG1 RAWO1 STHR1 ACOL
RAWG0 RAWO0 STHR0 FSQC
Raw Data Offset
19
RAWO7
RAWO6
ColorKiller Thresholds MISC /TVVCRDET
enhanced comb ctrl1 enhanced comb ctrl2 Status Byte Decoder 1 (read only) Status Byte Decoder 2 (read only)
1C 1E
HODG1 NFLD
HODG0 HLCK
VEDG1 SLTCA
VEDG0 GLIMT
MEDG1 GLIMB
MEDG0 WIPA
CMBT1 VEDT1
CMBT0 VEDT0
1D
DCSTD1 DCSTD0
1F
INTL
HLVLN
FIDT
STTB
TYPE3
COLSTR COPRO
RDCAP
Registers 20 to 2F reserved for future extensions (e.g. component processing saa7118+) reserved 20 to 2F 0 0 0 0 0
0
0
0
Registers 30 to 3F used by audio clock generator audio master clock cycles per field audio master clock cycles per field audio master clock cycles per field reserved for future extensions 30 31 32 33 34 35 36 37 38 39 ACPF7
ACPF6
ACPF5
ACPF4
ACPF3
ACPF2
ACPF1
ACPF0
ACPF15 0
ACPF14 0 0
ACPF13 0
ACPF12 0
ACPF11 0 0
ACPF10 0
ACPF9
ACPF8
ACPF17 0
ACPF16 0
0
0
0
0
audio master clock nominal increment audio master clock nominal increment audio master clock nominal increment reserved for future extensions
ACNI7
ACNI6
ACNI5
ACNI4
ACNI3
ACNI2
ACNI1 ACNI9
ACNI0 ACNI8
ACNI15 0
ACNI14 0 0
ACNI13
ACNI12
ACNI11
ACNI10
ACNI21 0
ACNI20 0
ACNI19 0
ACNI18 0
ACNI17 0
ACNI16 0
0
clock ratio AMXCLK to ASCLK
0 0
0 0
SDIV5
SDIV4
SDIV3
SDIV2
SDIV1
SDIV0
clock ratio ASCLK to ALRCLK audio clock gen. basic setup
LRDIV5 0
LRDIV4 0
LRDIV3 APLL 0
LRDIV2 AMVR 0
LRDIV1 LRPH 0
LRDIV0 SCPH 0
3A
UCGC 0
CGCDIV 0
reserved AC1
3B to 3F 40
0
0
Registers 40 to 7F used by general purpose VBI data slicer CHKWSS HAM_N LCR2 41
FCE
HUNT_N
0
0
0
0
LCR02_7 LCR02_6 LCR02_5 LCR02_4 LCR02_3 LCR02_2 LCR02_1 LCR02_0
Confidential - NDA required
page 119
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
REGISTER FUNCTION LCR3 ...
SUB ADDR 42 ... 56 57 58 59
D7
D6
D5
D4
D3
D2
D1
D0
Pr eli ND m A ina req ry uir ed
... ... ... ... ... ... ... ... LCR23 LCR24 FC HOFF VOFF LCR23_7 LCR23_6 LCR23_5 LCR23_4 LCR23_3 LCR23_2 LCR23_1 LCR23_0 LCR24_7 LCR24_6 LCR24_5 LCR24_4 LCR24_3 LCR24_2 LCR24_1 LCR24_0 FC7 FC6 FC5 FC4 FC3 FC2 FC1 FC0 HOFF7 VOFF7 FOFF 0 0 HOFF6 VOFF6 0 0 HOFF5 VOFF5 VEP 0 0 HOFF4 VOFF4 0 VOFF8 HOFF3 VOFF3 0 0 HOFF2 VOFF2 0 HOFF1 VOFF1 0 HOFF0 VOFF0 0 5A 5B HVOFF HOFF10 HOFF9 HOFF8 reserved 5C 5D 5E sliced data output mode 0 SLDOM4 SLDOM3 SLDOM2 SLDOM1 SLDOM0 SDID4 SDID3 SDID2 SDID1 SDID0 D7,D6 are read only, 2nd text data ident. code SDID reserved reserved (don't use) i2c-Readback 1 CC-header i2c-Readback 2 CC-odd byte 1 i2c-Readback 3 CC-odd byte 2 FC8V FC7V SDID5 5F 65 66 67 68 69 0 0 0 0 0 0 0 0 CCH_7 CCH_6 CCH_5 CCH_4 CCH_3 CCH_2 CCH_1 CCH_0 CCO1_7 CCO2_7 CCE1_7 CCE2_7 CCO1_6 CCO2_6 CCE1_6 CCE2_6 CCO1_5 CCO2_5 CCE1_5 CCE2_5 CCO1_4 CCO2_4 CCE1_4 CCE2_4 CCO1_3 CCO2_3 CCE1_3 CCE2_3 CCO1_2 CCO2_2 CCE1_2 CCE2_2 CCO1_1 CCO2_1 CCE1_1 CCE2_1 CCO1_0 CCO2_0 CCE1_0 CCE2_0
LCR03_7 LCR03_6 LCR03_5 LCR03_4 LCR03_3 LCR03_2 LCR03_1 LCR03_0
i2c-Readback 4 CC-even byte 1 i2c-Readback 5 CC-even byte 2 i2c-Readback 6 WSS-header
6A 6B
WSSH_7
WSSH_6
WSSH_5
WSSH_4
WSSH_3
WSSH_2
WSSH_1
WSSH_0
i2c-Readback 7 WSS-odd byte 1 i2c-Readback 8 WSS-odd byte 2 i2c-Readback 9 WSS-odd byte 3
6C 6D 6E 6F 70 71 72 73
WSSO1_7 WSSO1_6 WSSO1_5 WSSO1_4 WSSO1_3 WSSO1_2 WSSO1_1 WSSO1_0 WSSO2_7 WSSO2_6 WSSO2_5 WSSO2_4 WSSO2_3 WSSO2_2 WSSO2_1 WSSO2_0 WSSO3_7 WSSO3_6 WSSO3_5 WSSO3_4 WSSO3_3 WSSO3_2 WSSO3_1 WSSO3_0 WSSE1_7 WSSE1_6 WSSE1_5 WSSE1_4 WSSE1_3 WSSE1_2 WSSE1_1 WSSE1_0 WSSE2_7 WSSE2_6 WSSE2_5 WSSE2_4 WSSE2_3 WSSE2_2 WSSE2_1 WSSE2_0 WSSE3_7 WSSE3_6 WSSE3_5 WSSE3_4 WSSE3_3 WSSE3_2 WSSE3_1 WSSE3_0 GS1H_7 GS1H_6 GS1H_5 GS1H_4 GS1H_3 GS1H_2 GS1H_1 GS1H_0
i2c-Readback 10 WSS-even byte 1 i2c-Readback 11 WSS-even byte 2 i2c-Readback 12 WSS-even byte 3 i2c-Readback 13 GS1-header i2c-Readback 14 GS1-odd 1
GS1O1_7
GS1O1_6
GS1O1_5
GS1O1_4
GS1O1_3
GS1O1_2
GS1O1_1
GS1O1_0
Confidential - NDA required
page 120
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
REGISTER FUNCTION i2c-Readback 15 GS1-odd 2 i2c-Readback 16 GS1-even 1 i2c-Readback 17 GS1-even 2 i2c-Readback 18 GS2-header i2c-Readback 19 GS2-odd 1 i2c-Readback 20 GS2-odd 2 i2c-Readback 21 GS2-odd 3 i2c-Readback 22 GS2-odd 4 i2c-Readback 23 GS2-even 1 i2c-Readback 24 GS2-even 2 i2c-Readback 25 GS2-even 3 i2c-Readback 26 GS2-even 4
SUB ADDR 74 75 76 77 78 79
D7
GS1O2_7 GS1E1_7 GS1E2_7 GS2H_ 7
D6
GS1O2_6 GS1E1_6 GS1E2_6 GS2H_ 6
D5
GS1O2_5 GS1E1_5 GS1E2_5 GS2H_ 5
D4
GS1O2_4 GS1E1_4 GS1E2_4 GS2H_ 4
D3
GS1O2_3 GS1E1_3 GS1E2_3 GS2H_ 3
D2
GS1O2_2 GS1E1_2 GS1E2_2 GS2H_ 2
D1
GS1O2_1 GS1E1_1 GS1E2_1 GS2H_ 1
D0
GS1O2_0 GS1E1_0 GS1E2_0 GS2H_ 0
Pr eli ND m A ina req ry uir ed
GS2O1_ 7 GS2O1_ 6 GS2O1_ 5 GS2O1_ 4 GS2O1_ 3 GS2O1_ 2 GS2O1_ 1 GS2O1_ 0 GS2O2_ 7 GS2O2_ 6 GS2O2_ 5 GS2O2_ 4 GS2O2_ 3 GS2O2_ 2 GS2O2_ 1 GS2O2_ 0 GS2O3_ 7 GS2O3_ 6 GS2O3_ 5 GS2O3_ 4 GS2O3_ 3 GS2O3_ 2 GS2O3_ 1 GS2O3_ 0 GS2O4_ 7 GS2O4_ 6 GS2O4_ 5 GS2O4_ 4 GS2O4_ 3 GS2O4_ 2 GS2O4_ 1 GS2O4_ 0 GS2E1_ 7 GS2E1_ 6 GS2E1_ 5 GS2E1_ 4 GS2E1_ 3 GS2E1_ 2 GS2E1_ 1 GS2E1_ 0 GS2E2_ 7 GS2E2_ 6 GS2E2_ 5 GS2E2_ 4 GS2E2_ 3 GS2E2_ 2 GS2E2_ 1 GS2E2_ 0 GS2E3_ 7 GS2E3_ 6 GS2E3_ 5 GS2E3_ 4 GS2E3_ 3 GS2E3_ 2 GS2E3_ 1 GS2E3_ 0 GS2E4_ 7 GS2E4_ 6 GS2E4_ 5 GS2E4_ 4 GS2E4_3 GS2E4_ 2 GS2E4_ 1 GS2E4_ 0
7A 7B
7C 7D 7E 7F
registers 80 to FF used by X - port, I - port and the scaler Task independent Global Settings 1 Global Control1 80 81 82 CMOD 0 0 0
TEB 0 0
TEA 0 0
ICKS3 0 0
ICKS2 0
ICKS1 0
ICKS0 0
reserved reserved
0 0
FTIME XRQT IDV0
V_EAV1 XPE1 IDH1
V_EAV0 XPE0 IDH0
X-port I/O delay and enable control I - port signal Definitions I-port signal polarities
83 84 85 86
0
0
XPCK1 IDG01 ILLV
XPCK0 IDG00 IG1P
0
IDG11
IDG10
IDV1
ISWP1
ISWP0 VITX
IG0P
IRVP
IRHP
IDQP FEL0
I - port FIFO flag control and arbitration
IMPAK
IDG12
IDG02
FFL1
FFL0
FEL1
I-port I/O delay and enable control power save control
87
IPCK3
IPCK2
IPCK1
IPCK0
0
0
IPE1
IPE0
88
CH2EN 0 XTRI
CH1EN 0 ITRI
SWRST 0 FFIL
DPROG 0 FFOV
SLM3 0
0
SLM1 0
SLM0 0
reserved
89 to 8E 8F
0
scaler status information
PRDON ERR_OF
FIDSCI
FIDSCO
Confidential - NDA required
page 121
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
REGISTER FUNCTION
SUB ADDR
D7
D6
D5
D4
D3
D2
D1
D0
Pr eli ND m A ina req ry uir ed
Basic Settings and Acquisition Window definition Task Handling Control 90 91 92 CONLH CONLV XFDV OFIDC FSKP2 FSKP1 FSKP0 RPTSK FSC2 XDH STRC1 FSC1 XDQ STRC0 FSC0 X - port formats and configuration X - port Input Reference Signal Definition HLDFV XFDH SCSRC1 SCSRC0 SCRQE XDV1 XDV0 XCODE XCKS I - port formats and configuration 93 ICODE XO7 0 INS80 XO6 0 FYSK XO5 0 FOI1 XO4 0 FOI0 XO3 FSI2 XO2 FSI1 XO1 FSI0 XO0 Horizontal input window start (1) (continue) Horizontal input window length (continue) Vertical input window start ( (continue) 94 95 XO11 XS3 XO10 XS2 XO9 XS1 XO8 XS0 96 XS7 0 XS6 0 XS5 0 XS4 0 97 XS11 YO3 XS10 YO2 XS9 XS8 98 YO7 0 YO6 0 YO5 0 YO4 0 YO1 YO0 99 YO11 YS3 YO10 YS2 YO9 YS1 YO8 YS0 Vertical input window length (continue) 9A YS7 YS6 0 YS5 0 YS4 0 9B FMOD XD7 0 YS11 XD3 YS10 XD2 YS9 YS8 Horizontal output window length (continue) Vertical output window length (continue) 9C 9D 9E 9F XD6 0 XD5 0 XD4 0 XD1 XD0 XD11 YD3 XD10 YD2 XD9 XD8 YD7 0 YD6 0 YD5 0 YD4 0 YD1 YD0 YD11 YD10 YD9 YD8 FIR Filtering and Prescaling Horiz. prescaling Accumulation length Prescaler DC gain and FIR Prefilter control reserved Luminance brightness A0 0 0 XPSC5 XACL5 PFY1 XPSC4 XACL4 PFY0 XPSC3 XACL3 XC2_1 XPSC2 XACL2 XPSC1 XACL1 XPSC0 XACL0 A1 0 0 A2 PFUV1 PFUV0 XDCG2 XDCG1 XDCG0 A3 0 0 0 0 0 0 0 0 A4 BRIG7 BRIG6 BRIG5 BRIG4 BRIG3 BRIG2 BRIG1 BRIG0 Luminance contrast Chroma saturation reserved A5 CONT7 SATN7 0 CONT6 SATN6 0 CONT5 SATN5 0 CONT4 SATN4 0 CONT3 SATN3 0 CONT2 SATN2 0 CONT1 SATN1 0 CONT0 SATN0 0 A6 A7 Horizontal Phase Scaling Horiz. Scaling Increment Luma A8 XSCY7 XSCY6 XSCY5 XSCY4 XSCY3 XSCY2 XSCY1 XSCY0 Confidential - NDA required page 122
Filename: SAA7115_Datasheet.fm
Task A Definition registers 90 to BF
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
REGISTER FUNCTION (continue) Horizontal Phase Offset Luma reserved
SUB ADDR A9 AA
D7 0
D6 0
D5 0
D4
D3
D2
D1 XSCY9
D0 XSCY8
Pr eli ND m A ina req ry uir ed
XPHY7 XPHY6 XPHY5 XPHY4 XPHY3 XPHY2 XPHY1 XPHY0 AB Horiz. Scaling Increment Chroma (continue) Horizontal Phase Offset Chroma reserved Vertical Scaling AC AD AE AF B0 XSCC7 0 XSCC6 0 XSCC5 0 XSCC4 XSCC3 XSCC2 XSCC1 XSCC0 XSCC12 XSCC11 XSCC10 XPHC4 0 XPHC3 0 XPHC2 0 XSCC9 XSCC8 XPHC7 0 XPHC6 0 XPHC5 0 XPHC1 0 XPHC0 0 Vertical Scaling Increment Luma (B0 continued) YSCY7 YSCY6 YSCY5 YSCY4 YSCY3 YSCY2 YSCY1 YSCY0 B1 YSCY15 YSCC7 YSCY14 YSCC6 YSCY13 YSCY12 YSCY11 YSCY10 YSCC5 YSCC4 YSCC3 YSCC2 YSCY9 YSCY8 Vertical Scaling Increment Chroma (B2 continued) Vertical Scaling Mode Control reserved B2 YSCC1 YSCC0 B3 YSCC15 YSCC14 YSCC13 YSCC12 YSCC11 YSCC10 0 0 0 YMIR 0 0 YSCC9 0 YSCC8 B4 YMODE B5 to B7 B8 B9 Vertical Phase Offset Chroma `00' Vertical Phase Offset Chroma `01' Vertical Phase Offset Chroma `10' Vertical Phase Offset Chroma `11' Vertical Phase Offset Luma `00' Vertical Phase Offset Luma `01' Vertical Phase Offset Luma `10' Vertical Phase Offset Luma `11' YPC07 YPC17 YPC27 YPC37 YPY07 YPY17 YPC06 YPC16 YPC26 YPC36 YPY06 YPY16 YPC05 YPC15 YPC25 YPC35 YPY05 YPY15 YPC04 YPC14 YPC24 YPC34 YPY04 YPY14 YPC03 YPC13 YPC23 YPC33 YPY03 YPY13 YPC02 YPC12 YPC22 YPC32 YPY02 YPY12 YPC01 YPC11 YPC21 YPC31 YPY01 YPY11 YPC00 YPC10 YPC20 YPC30 YPY00 YPY10 BA BB BC BD BE BF YPY27 YPY26 YPY25 YPY24 YPY23 YPY22 YPY21 YPY20 YPY37 YPY36 YPY35 YPY34 YPY33 YPY32 YPY31 YPY30 Task B Definition registers C0 to EF Task Handling Control C0 C1 Basic Settings and Acquisition Window definition CONLH CONLV OFIDC FSKP2 FSKP1 FSKP0 RPTSK FSC2 STRC1 FSC1 STRC0 FSC0 X - port formats and configuration HLDFV SCSRC1 SCSRC0 SCRQE Confidential - NDA required page 123
Filename: SAA7115_Datasheet.fm
XSCY12 XSCY11 XSCY10
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
REGISTER FUNCTION Input Reference Signal Definition Control
SUB ADDR C2
D7 XFDV
D6 XFDH
D5 XDV1
D4 XDV0
D3 XCODE
D2 XDH
D1 XDQ
D0 XCKS
Pr eli ND m A ina req ry uir ed
I - port formats and configuration C3 ICODE XO7 0 INS80 XO6 0 FYSK XO5 0 FOI1 XO4 0 FOI0 XO3 FSI2 XO2 FSI1 XO1 FSI0 XO0 Horizontal input window start (1) (continue) Horizontal input window length (continue) Vertical input window start ( (continue) C4 C5 XO11 XS3 XO10 XS2 XO9 XS1 XO8 XS0 C6 XS7 0 XS6 0 XS5 0 XS4 0 C7 XS11 YO3 XS10 YO2 XS9 XS8 C8 YO7 0 YO6 0 YO5 0 YO4 0 YO1 YO0 C9 YO11 YS3 YO10 YS2 YO9 YS1 YO8 YS0 Vertical input window length (continue) CA CB YS7 YS6 0 YS5 0 YS4 0 FMOD XD7 0 YS11 XD3 YS10 XD2 YS9 YS8 Horizontal output window length (continue) Vertical output window length (continue) CC XD6 0 XD5 0 XD4 0 XD1 XD0 CD CE CF D0 D2 XD11 YD3 XD10 YD2 XD9 XD8 YD7 0 YD6 0 YD5 0 YD4 0 YD1 YD0 YD11 YD10 YD9 YD8 FIR Filtering and Prescaling Horiz. prescaling Accumulation length Prescaler DC gain and FIR Prefilter control reserved Luminance brightness 0 0 XPSC5 XACL5 PFY1 XPSC4 XACL4 PFY0 XPSC3 XACL3 XC2_1 XPSC2 XACL2 XPSC1 XACL1 XPSC0 XACL0 D1 0 0 PFUV1 PFUV0 XDCG2 XDCG1 XDCG0 D3 D4 0 0 0 0 0 0 0 0 BRIG7 BRIG6 BRIG5 BRIG4 BRIG3 BRIG2 BRIG1 BRIG0 Luminance contrast Chroma saturation reserved D5 CONT7 SATN7 0 CONT6 SATN6 0 CONT5 SATN5 0 CONT4 SATN4 0 CONT3 SATN3 0 CONT2 SATN2 0 CONT1 SATN1 0 CONT0 SATN0 0 D6 D7 D8 D9 Horizontal Phase Scaling Horiz. Scaling Increment Luma (continue) XSCY7 0 XSCY6 0 XSCY5 0 XSCY4 XSCY3 XSCY2 XSCY1 XSCY0 XSCY12 XSCY11 XSCY10 XPHY4 0 XPHY3 0 XPHY2 0 XSCY9 XSCY8 Horizontal Phase Offset Luma reserved DA DB XPHY7 0 XPHY6 0 XPHY5 0 XPHY1 0 XPHY0 0 Horiz. Scaling Increment Chroma DC XSCC7 XSCC6 XSCC5 XSCC4 XSCC3 XSCC2 XSCC1 XSCC0 Confidential - NDA required page 124
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
REGISTER FUNCTION (continue) Horizontal Phase Offset Chroma reserved Vertical Scaling
SUB ADDR DD DE DF E0
D7 0
D6 0
D5 0
D4
D3
D2
D1 XSCC9
D0 XSCC8
Pr eli ND m A ina req ry uir ed
XPHC7 0 XPHC6 0 XPHC5 0 XPHC4 0 XPHC3 0 XPHC2 0 XPHC1 0 XPHC0 0 Vertical Scaling Increment Luma (E0 continued) YSCY7 YSCY6 YSCY5 YSCY4 YSCY3 YSCY2 YSCY1 YSCY0 E1 YSCY15 YSCC7 YSCY14 YSCC6 YSCY13 YSCY12 YSCY11 YSCY10 YSCC5 YSCC4 YSCC3 YSCC2 YSCY9 YSCY8 Vertical Scaling Increment Chroma (E2 continued) Vertical Scaling Mode Control reserved E2 YSCC1 YSCC0 E3 YSCC15 YSCC14 YSCC13 YSCC12 YSCC11 YSCC10 0 0 0 YMIR 0 0 0 YSCC9 0 YSCC8 E4 YMODE 0 E5 to E7 E8 E9 0 0 0 0 0 0 Vertical Phase Offset Chroma `00' Vertical Phase Offset Chroma `01' Vertical Phase Offset Chroma `10' Vertical Phase Offset Chroma `11' Vertical Phase Offset Luma `00' Vertical Phase Offset Luma `01' Vertical Phase Offset Luma `10' Vertical Phase Offset Luma `11' LFCO's per line YPC07 YPC17 YPC27 YPC37 YPY07 YPY17 YPC06 YPC16 YPC26 YPC36 YPY06 YPY16 YPC05 YPC15 YPC25 YPC35 YPY05 YPY15 YPC04 YPC14 YPC24 YPC34 YPY04 YPY14 YPC03 YPC13 YPC23 YPC33 YPY03 YPY13 YPC02 YPC12 YPC22 YPC32 YPY02 YPY12 YPC01 YPC11 YPC21 YPC31 YPY01 YPY11 YPC00 YPC10 YPC20 YPC30 YPY00 YPY10 EA EB EC ED EE EF YPY27 YPY26 YPY25 YPY24 YPY23 YPY22 YPY21 YPY20 YPY37 YPY36 YPY35 YPY34 YPY33 YPY32 YPY31 YPY30 second PLL (PLL2) and Pulsegenerator Programming F0 F1 SPLPL7 SPPI3 SPLPL6 SPPI2 SPLPL5 SPPI1 SPLPL4 SPPI0 SPLPL4 SPLPL2 SPLPL1 SPLPL0 P-/I- Param. Select., PLL Mode, PLL H-Src., LFCO's per line Nominal PLL2 DTO Increment PLL2 Status SPMOD1 SPMOD0 SPHSEL SPLPL8 F2 F3 F4 F5 F6 SPNINC7 0 SPNINC6 0 SPNINC5 0 SPNINC4 0 SPNINC3 0 0 SPNINC2 0 SPNINC1 0 SPNINC0 SPNINC8 SPNINC15 SPNINC14 SPNINC13 SPNINC12 SPNINC11 SPNINC10 SPNINC9 SPLOCK Pulsgen. line length Pulse A Position, Pulsgen Resync. Pulsgen. H-Src., Pulsgen. line length Pulse A Position PGLEN7 PGLEN6 PGLEN5 PGLEN4 PGLEN3 PGLEN2 PGLEN1 PGLEN0 PGHAPS3 PGHAPS2 PGHAPS1 PGHAPS0 PGRES PGHSEL PGLEN8 F7 PGHAPS11 PGHAPS10 PGHAPS9 PGHAPS8 PGHAPS7 PGHAPS6 PGHAPS5 PGHAPS4 Confidential - NDA required page 125
Filename: SAA7115_Datasheet.fm
XSCC12 XSCC11 XSCC10
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
REGISTER FUNCTION Pulse B Position Pulse B Position
SUB ADDR F8 F9
D7
D6
D5
D4
D3 0 0 0 0 0
D2 0 0 0 0 0
D1 0 0 0 0 0
D0 0 0 0 0 0
Pr eli ND m A ina req ry uir ed
PGHBPS11 PGHBPS10 PGHBPS9 PGHBPS8 PGHBPS7 PGHBPS6 PGHBPS5 PGHBPS4 PGHCPS3 PGHCPS2 PGHCPS1 PGHCPS0 0 0 0 0 0 0 0 0 0 0 0 0 Pulse C Position Pulse C Position reserved reserved reserved FA FB PGHCPS11 PGHCPS10 PGHCPS9 PGHCPS8 PGHCPS7 PGHCPS6 PGHCPS5 PGHCPS4 FC FD FE FF S_PLL max. phase error threshold, PLL2 no. of lines threshold SPTHRL3 SPTHRL2 SPTHRL1 SPTHRL0 SPTHRM3 SPTHRM2 SPTHRM1 SPTHRM0 Confidential - NDA required page 126
Filename: SAA7115_Datasheet.fm
PGHBPS3 PGHBPS2 PGHBPS1 PGHBPS0
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16 DETAILED DESCRIPTION OF THE CONTROL REGISTERS 16.1 16.1.1 Chip Version / Ident Register CHIP VERSION
Pr eli ND m A ina req ry uir ed
Table 49 Chip version (SA00), read only register FUNCTION (1) CHIP VERSION (CV) LOGIC LEVELS ID06 CV2 ID05 CV1 ID07 CV3 ID04 CV0
1. This register contains the current version identification number of the chip. Initial version: 0001.
16.1.2
CHIP ID
Table 50 Chip ID (SA00) FUNCTION (1)
WRITE (HEX) 00 01 02 03 04 05 06 07 08 09
READ BACK (HEX) ID3 TO ID0 1
F 7 1 1 5
CHIP ID
D 0
E
VERSION 0
0A .. OF
1.
This register can be evaluated by alternating write/read cycles
Confidential - NDA required
page 127
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.2 16.2.1
Programming Register Decoder SUBADDRESS 01 ANALOG INPUT CONTROL 0, INCREMENT DELAY
Pr eli ND m A ina req ry uir ed
FUNCTION (1) no update min. delay IDEL3 1 1 IDEL2 1 1 IDEL1 1 1 IDEL0 1 0 recommended position max delay 1 0 0 0 0 0 0 0
1. The programming of the horizontal Increment delay is used to match internal processing delays to the delay of the AD-converter. Use recommended position only.
Table 51 Horizontal Increment delay (SA 01)
Table 52 Analog control 0 (SA01)
FUNCTION
LOGIC LEVELS
Update hysteresis for 9-bit gain, see FIGURE 8 ON PAGE 26
control bits D5 and D4 0 0
GUDL 1 0 1 1
GUDL 0 1 0 1
OFF
1 LSB 2 LSB 3 LSB
White Peak Control off
control bit D6 WPOFF 0 1
White peak control active (AD-signal is attenuated, if nominal luminance output white level is exceeded) White peak control disabled
Confidential - NDA required
page 128
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.2.2
SUBADDRESS 02 ANALOG INPUT CONTROL 1
Table 53 Analog control 1 (SA 02)
Pr eli ND m A ina req ry uir ed
FUNCTION LOGIC LEVELS Analog control 1 (Mode select, see Table 54 on page 130) (1) Mode 0: CVBS (automatic gain) from AI11 (pin 20) Mode 1: CVBS (automatic gain) from AI12 (pin 18) Mode 2: CVBS (automatic gain) from AI21 (pin 16) Mode 3: CVBS (automatic gain) from AI22 (pin 14) Mode 4: CVBS (automatic gain) from AI23 (pin 12) Mode 5: CVBS (automatic gain) from AI24 (pin 10) Mode 6: Y (automatic gain) from AI11 (pin 20) + C (gain adjusted via GAI2[8:0]) from AI21 (pin 16) Mode 7: Y (automatic gain) from AI12 (pin 18) + C (gain adjusted via GAI2[8:0]) from AI22 (pin 14) control bits D3 to D0 MODE2 0 0 0 0 1 1 1 1 0 0 MODE1 0 0 1 1 0 0 1 1 0 0 MODE3 0 0 0 0 0 0 0 0 1 1 MODE0 0 1 0 1 0 1 0 1 0 1 Mode 8: Y (automatic gain) from AI11 (pin 20) + C (gain channel 2 adapted to Y gain) from AI21 (pin 16) Mode 9: Y (automatic gain) from AI12 (pin 18) + C (gain channel 2 adapted to Y gain) from AI22 (pin 14) Mode 10 to 15: reserved 1 0 1 1 1 ... 1 ... 1 ... 1 control bits D7 and D6 Analog function select FUSE, see Figure 7 on page 25 FUSE 1 0 0 FUSE 0 0 1 Amplifier plus anti-alias filter bypassed Amplifier active 1 0 Amplifier plus anti-alias filter active 1 1
1. In order to reduce power consumption of the device use the registers CH1EN and CH2EN (subaddress 88h, bits 7 and 6) to switch of either of the ADCs not used in CVBS modes.
Note: To take full advantage of the YC-modes 6 to 9 the I2C-bit BYPS (sub address 09h, bit 7) must be set to "1" (full luminance bandwidth)
Confidential - NDA required
page 129
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Pr eli ND m A ina req ry uir ed
AI24 AI23 AI22 AI21 AD2 AD2 CHROMA CHROMA AI12 AI11 AD1 LUMA AI12 AI11 AD1 LUMA
AI24 AI23 AI22 AI21
MODE 0 CVBS (automatic gain)
AI24 AI22 AI21 AI21
MODE 1 CVBS (automatic gain)
AI24 AI23 AI22 AI21 AI12 AI11
AD2
CHROMA
AD2
CHROMA
AI12 AI11
AD1
LUMA
AD1
LUMA
MODE 2 CVBS (automatic gain)
AI24 AI23 AI22 AI21 AI12 AI11
MODE 3 CVBS (automatic gain)
AI24 AI23 AI22 AI21 AI12 AI11
AD2
CHROMA
AD2
CHROMA
AD1
LUMA
AD1
LUMA
MODE 4 CVBS (automatic gain)
AI24 AI23 AI22 AI21 AI12 AI11
MODE 5 CVBS (automatic gain)
AI24 AI23 AI22 AI21
AD2
CHROMA
AD2
CHROMA
AD1
LUMA
AI12 AI11
AD1
LUMA
MODE 6 Y+C (gain channel 2 adjusted via GAI2) MODE 7 Y+C (gain channel 2 adjusted via GAI2)
Table 54 Effects of MODE[3:0] settings
Confidential - NDA required
page 130
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Pr eli ND m A ina req ry uir ed
AI24 AI23 AI22 AI21 AD2 CHROMA AI24 AI23 AI22 AI21 AI12 AI11 AD2 CHROMA AI12 AI11 AD1 LUMA AD1 LUMA
MODE 8 Y+C (gain channel 2 adapted to Y-gain) MODE 9 Y+C (gain channel 2 adapted to Y-gain)
Table 54 Effects of MODE[3:0] settings
Note: To take full advantage of the YC-modes 6 to 9 the control-bit BYPS (sub address 09h, bit 7) should be set to "1" (full luminance bandwidth)
Confidential - NDA required
page 131
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.2.3
SUBADDRESS 03 ANALOG INPUT CONTROL 2
Table 55 Analog control 2 (AICO2) (SA03)
Pr eli ND m A ina req ry uir ed
FUNCTION LOGIC LEVEL DATA BIT Static gain control channel 1 (GAI18) (see SA04) Sign bit of gain control see Table 56 D0 Static gain control channel 2 (GAI28) (see SA05) Sign bit of gain control see Table 57 D1 Gain control fix (GAFIX) Automatic gain controlled by MODE[3:0] 0 Gain is user programmable via GAI1 + GAI2 1 D2 Automatic gain control integration (HOLDG) AGC active AGC integration hold (frozen) 0 1 D3 Color peak off (CPOFF) Color peak control active (AD-signal is attenuated, if maximum input level is exceeded, avoids clipping effects on screen) Color peak off 0 1 D4 AGC hold during Vertical blanking period (VBSL) Short vertical blanking (AGC disabled during equalization- and serration pulses) 0 Long vertical blanking (AGC disabled from start of pre equalization pulses until start of active video (line 22 for 60 Hz, line 24 for 50 Hz) 1 D5 HL not reference select (HLNRS) Normal clamping if decoder is in unlocked state Reference select if decoder is in unlocked state 0 1 D6 Confidential - NDA required page 132
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.2.4
SUBADDRESS 04 ANALOG INPUT CONTROL 3
Table 56 Gain control analog (AIC03); static gain control channel 1 GAI1 (SA 03, SA 04)
Pr eli ND m A ina req ry uir ed
DECIMAL VALUE 0.... GAIN (dB) -3.0 0 0 SIGN BIT 03H D0 GAI18 0 0 0 CONTROL BITS 04H D7 TO 04H D0 GAI15 0 0 0 1 GAI14 0 1 1 1 GAI13 0 0 0 1 GAI12 0 0 0 1 GAI17 0 1 1 GAI16 0 0 0 1 GAI11 0 0 0 1 GAI10 0 0 1 1 ....144 145.... ....511 +6.0 1 1 16.2.5 SUBADDRESS 05 ANALOG INPUT CONTROL 4 Table 57 Gain control analog (AIC04); static gain control channel 2 GAI2 (SA 03, SA 05) DECIMAL VALUE 0.... GAIN (dB) -3.0 0 0 SIGN BIT 03H D1 GAI28 0 0 0 CONTROL BITS 05H D7 to 05H D0 GAI24 0 1 1 1 GAI23 0 0 0 1 GAI27 0 1 1 1 GAI26 0 0 0 1 GAI25 0 0 0 1 GAI22 0 0 0 1 GAI21 0 0 0 1 GAI20 0 0 1 1 ....144 145.... ....511 +6.0 1 16.2.6 SUBADDRESS 06 HORIZONTAL SYNC START Table 58 Horizontal sync begin (SA 06) DELAY TIME (STEP SIZE = 8/LLC) -128...-109 (50Hz) -128...-108 (60Hz) -108 (50Hz) ... -107 (60Hz) ... ...108 (50Hz) ...107 (60Hz) CONTROL BITS D7 to D0 HSB4 HSB3 HSB7 HSB6 HSB5 HSB2 HSB1 HSB0 forbidden (outside available central counter range) 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 1 0 0 0 1 0 1 0 1 109...127 (50Hz) 108...127 (60Hz) forbidden (outside available central counter range) Confidential - NDA required page 133
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.2.7
SUBADDRESS 07 HORIZONTAL SYNC STOP
Table 59 Horizontal sync stop (SA 07)
Pr eli ND m A ina req ry uir ed
DELAY TIME (STEP SIZE = 8/LLC) -128...-109 (50Hz) -128...-108 (60Hz) -108 (50Hz) ... -107 (60Hz) ... ...108 (50Hz) ...107 (60Hz) CONTROL BITS D7 to D0 HSS4 HSS3 HSS7 HSS6 HSS5 HSS2 HSS1 HSS0 forbidden (outside available central counter range) 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 1 0 0 0 1 0 1 0 1 109...127 (50Hz) 108...127 (60Hz) forbidden (outside available central counter range) Confidential - NDA required page 134
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.2.8
SUBADDRESS 08 SYNC CONTROL
Table 60 Sync control (SA 08)
Pr eli ND m A ina req ry uir ed
FUNCTION CONTROL BITS LOGIC LEVELS DATA BITS Vertical noise reduction (VNOI) Normal mode (recommended setting) VNOI1 VNOI0 VNOI1 VNOI0 VNOI1 VNOI0 VNOI1 VNOI0 0 0 0 1 1 0 1 1 D1 D0 D1 D0 D1 D0 D1 D0 Fast mode (applicable for stable sources only, automatic field detection [AUFD] must be disabled) Free running mode Vertical noise reduction bypassed Horizontal PLL (HPLL) PLL closed HPLL 0 PLL open, horizontal frequency fixed HPLL 1 D2 Horizontal time constant selection (HTC1, HTC0) TV mode (recommended for poor quality TV signals only, do not use for new applications) 00 VTR mode (recommended if a deflection control circuit is directly connected at the output of the decoder) automatic TV/VRC detection (recommended setting) threshold is programmable via ATVT[1:0], see SA 1B fast locking mode HTC1, HTC0 01 10 D4,D3 11 Forced ODD/EVEN toggle FOET ODD/EVEN-signal toggles only with interlaced source ODD/EVEN-signal toggles field wise even if source is non-interlaced 0 FOET 1 D5 Field selection (FSEL, active, if AUFD = 1) 50 Hz, 625 lines 60 Hz, 525 lines FSEL 0 1 D6 Automatic field detection (AUFD) Field state directly controlled via FSEL Automatic field detection (recommended setting) AUFD 0 1 D7 Confidential - NDA required page 135
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.2.9
SUBADDRESS 09 LUMINANCE CONTROL
Table 61 Luminance control (SA 09)
Pr eli ND m A ina req ry uir ed
FUNCTION BITS LOGIC LEVELS DATA BITS Sharpness Control, Luminance filter characteristic (LUFI), see Figure 17 on page 37 resolution enhancement filter 8.0 dB at 4.1 MHz resolution enhancement filter 6.8 dB at 4.1 MHz resolution enhancement filter 5.1 dB at 4.1 MHz resolution enhancement filter 4.1 dB at 4.1 MHz resolution enhancement filter 3.0 dB at 4.1 MHz resolution enhancement filter 2.3 dB at 4.1 MHz resolution enhancement filter 1.6 dB at 4.1 MHz PLAIN low pass filter 2 dB at 4.1 MHz low pass filter 3 dB at 4.1 MHz LUFI[3:0] LUFI[3:0] LUFI[3:0] LUFI[3:0] LUFI[3:0] LUFI[3:0] LUFI[3:0] 0001 0010 0011 0100 0101 0110 0111 LUFI[3:0] 0000 LUFI[3:0] LUFI[3:0] LUFI[3:0] LUFI[3:0] LUFI[3:0] LUFI[3:0] LUFI[3:0] LUFI[3:0] 1000 1001 1010 1011 1100 1101 1110 1111 D3 .. D0 low pass filter 3 dB at 3.3 MHz, 4 dB at 4.1 MHz low pass filter 3 dB at 2.6 MHz, 8 dB at 4.1 MHz low pass filter 3 dB at 2.4 MHz, 14 dB at 4.1 MHz low pass filter 3 dB at 2.2 MHz, notch at 3.4 MHz low pass filter 3 dB at 1.9 MHz, notch at 3.0 MHz low pass filter 3 dB at 1.7 MHz, notch at 2.5 MHz Remodulation bandwidth for luminance (LUBW), see figures 13 to 16 LUBW LUBW Small remodulation bandwidth (narrow chroma notch => higher luminance bandwidth) Large remodulation bandwidth (wider chroma notch => smaller luminance bandwidth) 0 1 D4 Processing delay in non combfilter mode (LDEL) Processing delay is equal to internal pipelining delay (recommended setting) LDEL 0 One (NTSC-standards) or two (PAL-standards) video lines additional processing delay D5 LDEL 1 Adaptive luminance comb filter (YCOMB) Active, if BYPS = 0 Disabled (= chrominance trap enabled, if BYPS = 0) YCOMB 0 YCOMB 1 D6 Chrominance trap / comb filter bypass (BYPS) Chrominance trap or luminance comb filter active, default for CVBS mode BYPS BYPS 0 1 Chrominance trap or luminance comb filter bypassed; default for S-Video mode D7 Confidential - NDA required page 136
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.2.10 SUBADDRESS 0A DECODER BRIGHTNESS
Pr eli ND m A ina req ry uir ed
Table 62 Luminance brightness control decoder part DBRI7 to DBRI0 (SA 0A) OFFSET CONTROL BITS D7 to D0 DBRI4 1 0 DBRI3 1 0 DBRI7 1 1 DBRI6 1 0 DBRI5 1 0 DBRI2 1 0 DBRI1 1 0 DBRI0 1 0 255 (bright) 0 (dark) 128 (ITU level) 0 0 0 0 0 0 0 0 16.2.11 SUBADDRESS 0B DECODER CONTRAST Table 63 Luminance contrast control decoder part DCON7 to DCON0 (SA 0B) GAIN CONTROL BITS D7 to D0 DCON4 1 0 DCON3 1 0 DCON7 0 0 DCON6 1 1 DCON5 1 0 DCON2 1 1 DCON1 1 0 DCON0 1 0 1.984 (maximum) 1.063 (ITU level) 1.0 0 1 0 0 0 0 0 0 0 (luminance off) 0 0 0 0 0 0 0 0 -1.0 (inverse luminance) -2.0 (inverse luminance) 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 16.2.12 SUBADDRESS 0C DECODER SATURATION Table 64 Chrominance saturation control decoder part DSAT7 to DSAT0 (SA 0C) GAIN CONTROL BITS D7 to D0 DSAT4 1 0 0 0 DSAT3 1 0 0 0 DSAT7 0 0 DSAT6 1 1 DSAT5 1 0 0 0 DSAT2 1 0 0 0 DSAT1 1 0 0 0 DSAT0 1 0 0 0 1.984 (maximum) 1.0 (ITU level) 0 (colour off) 0 0 0 0 0 0 0 0 -1.0 (inverse chrominance) -2.0 (inverse chrominance) 1 1 1 0 Confidential - NDA required page 137
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.2.13 SUBADDRESS 0D CHROMINANCE HUE Table 65 Chrominance hue control HUEC7 to HUEC0 (SA 0D)
Pr eli ND m A ina req ry uir ed
CONTROL BITS D7 to D0 HUEC4 1 0 0 HUEC3 1 0 0 HUE PHASE (DEG) +178.6.... ....0.... ....-180.0 HUEC7 0 0 1 HUEC6 1 0 0 HUEC5 1 0 0 HUEC2 1 0 0 HUEC1 1 0 0 HUEC0 1 0 0 Confidential - NDA required page 138
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.2.14 SUBADDRESS 0E CHROMINANCE CONTROL 1 Table 66 Chrominance control 1 (SA 0E)
Pr eli ND m A ina req ry uir ed
FUNCTION NAME LOGIC LEVELS DATA BITS Adaptive chrominance comb filter (CCOMB) Disabled Active CCOMB 0 1 D0 Confidential - NDA required page 139
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
FUNCTION
NAME
LOGIC LEVELS
DATA BITS
Pr eli ND m A ina req ry uir ed
Automatic chrominance standard detection control 0 (AUTO0) NOTE: Automatic chrominance standard detection control 1 (AUTO1) is located at subaddress 14h, D2 The automatic standard detection circuit does not only search and lock to any broadcast standard, but provides also some default settings dependent on the chosen automatic level. e.g it automatically disables the combfilter or remodulation functionality if Y/C-mode is selected or a B&W source is present. Also the bandwidths of the internal filters are adapted to the detected standard. However, if these setting are not convenient for the customers application, lower auto levels can be chosen, so that only the standard search and lock is active and all other settings can be programmed independently. Disabled 00 Auto mode active (highest level), filter settings and Sharpness control are preset to default values according to the detected standard and mode (recommended position) The following registers are automatically set dependent on the following conditions: DCVF 0 LCBW 110 000 110 110 000 110 000 000 xxx LUBW 0 0 0 0 0 0 1 x x YCOMB CCOMB LUFI p p 0 p p 0 0 0 0 p p 0 p p 0 x x x 0000 0110 0000 0000 0110 0000 1011 0000 0000 Mode PAL comb CHBW 0 0 1 0 0 1 0 0 x PAL 0 nocomb PAL Y/C 0 NTSC comb 1 01 NTSC 0 nocomb NTSC Y/C 1 SA14:D2, AUTO[1:0] SA0E: D1 SECAM x SECAM x Y/C B&W x p: programming is required and valid x: setting has no influence Y/C-mode has to be selected via BYPS = 1 Auto mode active (medium level), filter settings are preset to default values according to the detected standard and mode like AUTO[1:0] = 01, with the following differences: Sharpness control (LUFI[3:0]) is freely programmable CCOMB is freely programmable CHBW is freely programmable 10 Auto mode active (lowest level), automatic standard recognition, but no filter presets 11 Confidential - NDA required page 140
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
FUNCTION Fast colour time constant (FCTC) Nominal time constant
NAME
LOGIC LEVELS
DATA BITS
Pr eli ND m A ina req ry uir ed
0 1 Fast time constant for special applications (High quality input source, fast chroma lock required, automatic standard detection OFF FCTC D2 Disable chrominance vertical filter and PAL phase error correction (DCVF) Chrominance vertical filter, PAL phase error correction on (during active video lines) Chrominance vertical filter, PAL phase error correction permanently off DCVF 0 D3 1 Colour standard selection in non AUTO-mode (CSTD0 to CSTD2); logic levels 110 and 111 are reserved, do not use 50 Hz / 625 lines 60 Hz / 525 lines LOGIC LEVELS 000 001 DATA BITS PAL BGDHI (4.43Mhz) NTSC 4.43 (50 Hz) NTSC M (3.58MHz) PAL 4.43 (60 Hz) NTSC 4.43 (60 Hz) PAL M (3.58MHz) reserved Combination-PAL N (3.58MHz) NTSC N (3.58MHz) reserved SECAM reserved reserved 010 NTSC-Japan (3.58MHz) reserved reserved CSTD[2:0] 011 100 D6 TO D4 101 110 111 Colour standard selection (CSTD0 to CSTD2) in AUTO Mode (Auto mode is selected if either AUTO0 or AUTO1 is set, see above) 50 Hz / 625 lines 60 Hz / 525 lines LOGIC LEVELS 000 DATA BITS preferred Standard is PAL BGDHI (4.43Mhz) reserved reserved reserved preferred Standard is NTSC M (3.58MHz) reserved reserved reserved 001 010 011 preferred Standard is PAL BGDHI (4.43Mhz) preferred Standard is NTSC-Japan (3.58MHz, no 7.5 IRE-Offset) preferred Standard is NTSC M (3.58MHz) reserved reserved CSTD[2:0] 100 D6 TO D4 preferred Standard is SECAM reserved reserved 101 110 111 Note: The meaning of "preferred standard" is, that the internal search machine will always give priority to the selected standard, thus the recognition time for these standards is kept short. Confidential - NDA required page 141
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
FUNCTION
NAME
LOGIC LEVELS
DATA BITS
Pr eli ND m A ina req ry uir ed
Clear DTO (CDTO) Disabled 0 Every time CDTO is set, the internal subcarrier DTO phase is reset to 0 and the RTCO output generates a logic 0 at time slot 68. So an identical subcarrier phase can be generated by an external device (e.g. an encoder). The DTO-reset takes also care that the internal remodulation carrier's phase aligned to the internal demodulation phase. A DTO-reset must be initiated after reprogramming the color standard CSTD in non auto mode. However, if automatic standard searching mode is activated via AUTO[1:0] <> 00 an internal DTO-reset is generated after change of standard. That means it is only necessary to generate a DTO reset after connection to an external encoder. CDTO 1 D7 Confidential - NDA required page 142
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.2.15 SUBADDRESS 0F CHROMINANCE GAIN CONTROL Table 67 Chrominance Gain control (SA 0F)
Pr eli ND m A ina req ry uir ed
FUNCTION LOGIC LEVELS Chroma Gain Value (if ACGC is set to 1) minimum gain (0.5) control bits D6 to D0 CGAIN0 0 0 CGAIN6 CGAIN5 0 0 0 1 CGAIN4 0 0 CGAIN3 0 0 CGAIN2 0 1 CGAIN1 0 0 nominal gain (1.125) maximum gain (7.5) 1 1 1 1 1 1 1 Automatic Chroma Gain Control ACGC ON (recommended setting) control bit D7 0 programmable gain via CGAIN[6:0], 1 Confidential - NDA required page 143
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.2.16 SUBADDRESS 10 CHROMINANCE/LUMINANCE CONTROL 2 Table 68 Chrominance/Luminance control 2 (SA 10)
Pr eli ND m A ina req ry uir ed
FUNCTION LOGIC LEVELS COMBINED LUMINANCE/CHROMINANCE BANDWIDTH ADJUSTMENT (SEE FIGURES 11 TO 16) smallest chrominance bandwidth / largest luminance bandwidth recommended setting for non combfilter mode (YCOMB=0,CCOMB=0) control bits D2 to D0 LCBW0 0 LCBW2 0 LCBW1 0 0 1 1 0 1 1 1 0 1 recommended setting for active adaptive combfilter (YCOMB=1,CCOMB=1) largest chrominance bandwidth / smallest luminance bandwidth control bit D3 Chrominance bandwidth (see figures 11 and 12) small wide CHBW 0 1 control bits D5 and D4 Fine offset adjustment R-Y component 0 LSB OFFV1 0 0 1 1 OFFv0 0 1 0 1 +1/4 LSB +1/2 LSB +3/4 LSB control bits D7 and D6 Fine offset adjustment B-Y component 0 LSB OFFU1 0 0 1 1 OFFU0 0 1 0 1 +1/4 LSB +1/2 LSB +3/4 LSB Confidential - NDA required page 144
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.2.17 SUBADDRESS 11 MODE / DELAY CONTROL Table 69 Mode / Delay control SA 11
Pr eli ND m A ina req ry uir ed
FUNCTION LOGIC LEVELS Luminance delay compensation (steps in 2/LLC) -4... ...3 control bits D2 to D0 YDEL0 0 1 0 YDEL2 1 0 0 YDEL1 0 1 0 ...0...(recommended) control bit D4 Output Polarity RTS0 RTS0 non inverted RTS0 inverted RTP0 0 1 Fine position of HS-pulse, available on outputs RTSO, RTS1 and XDH, step size of 2/LLC 0 1 2 3 control bits D5 and D4 HDEL1 0 0 1 1 HDEL0 0 1 0 1 control bit D6 Output Polarity RTS1 RTS1 non inverted RTS1 inverted RTP1 0 1 control bit D7 Colour on COLO 0 1 Automatic colour killer enabled (recommended setting) Colour forced on Confidential - NDA required page 145
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.2.18 SUBADDRESS 12 RTS0/1 OUTPUT CONTROL
Pr eli ND m A ina req ry uir ed
Table 70 RTS0 output control (SA 12) FUNCTION LOGIC LEVELS D3 to D0 RTS0 OUTPUT CONTROL (1) RTSE03 RTSE02 RTSE01 RTSE00 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 tristate constant LOW CREF (13.5 MHz toggling pulse, see Figure 24 on page 48) CREF2 (6.75 MHz toggling pulse, see Figure 24 on page 48) HL (horizontal lock indicator), selectable via HLSEL (sub addr. 11h, bit 4): HLSEL = 0: standard horizontal lock indicator HLSEL =1: fast horizontal lock indicator (use is not recommended for sources with unstable timebase e. g. VCR's) 0: unlocked 1: locked VL (Vertical & horizontal lock) 0: unlocked 1: locked 0 1 0 0 0 1 0 1 DL (Vertical & horizontal lock & color detected) 0: unlocked 1: locked reserved 0 0 1 1 1 1 0 1 HREF horizontal reference signal: indicates 720 pixels valid data on the expansion port. The positive slope marks the beginning of a new active line. HREF is also generated during the vertical blanking interval, see Figure 24 on page 48 1 0 0 0 HS, programmable width in LLC8 steps via HSB[7:0] and HSS[7:0] (sub addr. 06h and 07h), fine position adjustment in LLC2 steps via HDEL[1:0] (sub addr. 11h, bits 5:4), see Figure 24 on page 48) HQ (HREF gated with VGATE) reserved 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 V123 (Vertical sync, see Figure 22 on page 46 and Figure 23 on page 47) VGATE (programmable via VSTA[8:0], VSTO[8:0] and VGPS, sub addresses 15h, 16h, and 17h) reserved FID (position programmable via VSTA[8:0], sub addresses 15h and 17h, see Figure 22 on page 46 and Figure 23 on page 47) Note 1. The polarity of any signal on RTS0 can be inverted via RTP0 (sub address 11 bit 3). Confidential - NDA required page 146
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 71 RTS1 output control (SA 12) FUNCTION RTS1 OUTPUT CONTROL (1) LOGIC LEVELS D7 to D4
Pr eli ND m A ina req ry uir ed
RTSE13 RTSE12 RTSE11 RTSE10 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 tristate constant LOW CREF (13.5 MHz toggling pulse, see Figure 24 on page 48) CREF2 (6.75 MHz toggling pulse, see Figure 24 on page 48) HL (horizontal lock indicator), selectable via HLSEL (sub addr. 11h, bit 4): HLSEL = 0: standard horizontal lock indicator HLSEL =1: fast horizontal lock indicator (use is not recommended for sources with unstable timebase e. g. VCR's) 0: unlocked 1: locked VL (Vertical & horizontal lock) 0: unlocked 1: locked 0 1 0 0 0 1 0 1 DL (Vertical & horizontal lock & color detected) 0: unlocked 1: locked reserved 0 0 1 1 1 1 0 1 HREF horizontal reference signal: indicates 720 pixels valid data on the expansion port. The positive slope marks the beginning of a new active line. HREF is also generated during the vertical blanking interval, see Figure 24 on page 48 1 0 0 0 HS, programmable width in LLC8 steps via HSB[7:0] and HSS[7:0] (sub addr. 06h and 07h), fine position adjustment in LLC2 steps via HDEL[1:0] (sub addr. 11h, bits 5:4), see Figure 24 on page 48) HQ (HREF gated with VGATE) reserved 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 V123 (Vertical sync, see Figure 22 on page 46 and Figure 23 on page 47) VGATE (programmable via VSTA[8:0], VSTO[8:0] and VGPS, sub addresses 15h, 16h, and 17h) reserved FID (position programmable via VSTA[8:0], sub addresses 15h and 17h, see Figure 22 on page 46 and Figure 23 on page 47) Note 1. The polarity of any signal on RTS1 can be inverted via RTP1 (sub address 11 bit 6). Confidential - NDA required page 147
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.2.19 SUBADDRESS 13 AND 1B RT / X-PORT OUTPUT CONTROL Table 72 RT / X-port output control (SA 13, SA 1B)
Pr eli ND m A ina req ry uir ed
FUNCTION LOGIC LEVELS XPD[7:0] - port output format selection, see also chapter 9.4 ITU656 - 8 Bit standard mode X-PORT OUTPUT XRH 1BH D4 13H D2 TO D0 XPD[7:0] XRV XDQ OFTS3 OFTS2 OFTS1 OFTS0 0 0 0 0 0 0 0 1 modified ITU656-8-bit mode: standard Vflag is replaced by VGATE, programmable via VSTA,VSTO Y, CB, CR [7:0] 8-bit multiplexed Y,Cb,Cr-mode, ITU- Codes and 10/80 blanking values are disabled reserved reserved reserved reserved Horizontal Sync. Signal controlled by XRHS Vertical Sync. Signal controlled by XRVS[1:0] 0 0 1 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 ADC1-bypass-mode (msbs only) ADC2-bypass-mode (msbs only) ITU656-10-bit standard mode AD1[8:1] AD2[8:1] HREF && VGATE modified ITU656-10-bit mode: standard Vflag is replaced by VGATE, programmable via VSTA,VSTO Y, CB, CR [9:2] Y, CB, CR [1] Y, CB, CR [0] 10-bit multiplexed Y,Cb,Cr-mode, ITU- Codes and 10/80 blanking values are disabled reserved 1 0 1 0 1 1 1 0 1 1 1 0 0 1 0 1 reserved reserved reserved reserved reserved ADC1-bypass-mode (9 bits) ADC2-bypass-mode (9 bits) AD1[8:1] AD2[8:1] AD1[0] AD2[0] 1 1 1 1 1 1 0 1 Confidential - NDA required page 148
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 73 RT / X-port output control SA 13 FUNCTION Horizontal lock indicator selection HLSEL LOGIC LEVELS control bits D3 HLSEL 0 1
Pr eli ND m A ina req ry uir ed
copy of inverted HLOCK status bit (default) fast horizontal lock indicator (for special applications only) X - port XRV output selection XRVS control bits D5 and D4 XRVS1 0 0 1 1 XRVS0 0 1 0 1 V123 (see FIGURE 22 ON PAGE 46 and FIGURE 23 ON PAGE 47) ITU656 related field ID (see FIGURE 22 ON PAGE 46 and FIGURE 23 ON PAGE 47) inverted V123 inverted ITU656 related field ID X - port XRH output selection XRHS HREF, see Figure 24 on page 48 control bits D6 0 HS (programmable: width in LLC8-steps via HSB[7:0] and HSS[7:0] fine position in LLC2 steps via HDEL[1:0]), see Figure 24 on page 48 1 RTCO output enable RTCE tristate enabled control bits D7 0 1 16.2.20 SUBADDRESS 14 ANALOG / ADC / AUTO/ COMPATIBILITY CONTROL Table 74 analog / ADC / compatibility control FUNCTION SA 14 LOGIC LEVELS ADC sample clock phase delay control bits APCK1 0 0 1 1 D1 AND D0 APCK0 0 1 0 1 application dependent Confidential - NDA required page 149
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
FUNCTION Automatic chrominance standard detection control 1 (AUTO1), see explanation at subaddress 0Eh control bit
LOGIC LEVELS D2
Pr eli ND m A ina req ry uir ed
XTOUT output enable (XTOUTE) control bit D3 pin 4 (XTOUT) tristated pin 4 (XTOUT) enabled 0 1 control bits 01H D7 AND 14H D5, D4 AOSL1 14H D5 0 0 1 1 0 0 1 1 AOSL0 14H D4 0 1 0 1 0 1 0 1 Analog test select (AOSL) AOSL2
01H D7
AOUT connected to ground (recommended) AOUT connected to input CH1 video AOUT connected to input CH2 video AOUT connected to input BPFOUT2 reserved (gnd) reserved (gnd) reserved (gnd)
0 0 0 0 1 1 1 1
AOUT connected to input BPFOUT (LLC)
Update time interval for AGC-value (UPTCV)
control bit
D6
Horizontal update (once per line) Vertical update (once per field)
0 1
Compatibility switch for SAA7199 (CM99)
control bit
D7
off (default)
0 1
on (to be set only if SAA7199 is used for re-encoding in conjunction with RTCO active
Confidential - NDA required
page 150
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.2.21 SUBADDRESS 15, 17VGATE START Table 75 Start of VGATE-pulse (01-transition) and polarity change of FID-pulse, VGPS = 0, see figures 22 and 23 (SA 15, SA 17)
FIELD Frame line counting 1 2 Decimal value 312 0.... 17H D0 VSTA8 1
Pr eli ND m A ina req ry uir ed
CONTROL BITS 15H D7 to 15H D0
VSTA5 1 VSTA4 1 VSTA3 1 VSTA2 0 VSTA7 0 VSTA6 0 VSTA1 0 VSTA0 0 1ST 1ST 1ST 1ST 1ST 1ST 2ND 2ND 2ND 2ND 2ND 2ND 314 315 625 4 5 267 268 3 50 HZ 0 0 0 0 0 0 0 0 0 312 ....310 262 0.... 1 0 0 1 1 0 1 1 1 1 0 0 0 0 0 1 1 0 60 HZ 0 0 0 0 0 0 0 0 0 265 ....260 1 0 0 0 0 0 1 0 1
16.2.22 SUBADDRESS 16, 17 VGATE STOP
Table 76 Stop of VGATE-pulse (10-transition), VGPS = 0, see figures 22 and 23 (SA 16, SA 17)
FIELD Frame line counting 1 Decimal value 312 17H D0 VSTO8 1
CONTROL BITS 16H D7 to 16H D0 VSTO4 1 VSTO3 1
VSTO7 0
VSTO6 0
VSTO5 1
VSTO2 0
VSTO1 0
VSTO0 0
1ST
2ND 1ST
314 2
50 HZ
2ND 1ST
315
0....
0
0 0
0 0
0 1
0 1
0 0
0 1
0 1
0 1
312 4
2ND 1ST 2ND 1ST
625 267 5
....310 262
1
1
0
0
0
0
0
1
1
0
60 HZ
2ND 1ST
268 3
0....
0
0
0
0
0
0
0
0
0
265
2ND
....260
1
0
0
0
0
0
1
0
1
Confidential - NDA required
page 151
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.2.23 SUBADDRESS 17 MISC./VGATE-MSB'S Table 77 Misc./VGATE-MSB's (SA 17)
Pr eli ND m A ina req ry uir ed
FUNCTION LOGIC LEVELS CONTROL BITS VSTA8, see SA 15 MSB VGATE start see Table 76 D0 VSTO8, see SA 16 MSB VGATE stop see Table 76 D1 Alternative VGATE position (VGPS) VGATE position according to tables and 76 0 VGATE occurs one line earlier during field 2 1 D2 Standard detection search loop latency (LATY) reserved one field ... 000 001 ... three fields (recommended value) ... 011 ... D5 TO D3 seven fields 111 LLC (pin 48) output enable (LLC2E) enabled tristate 0 1 D6 LLC (pin 46) output enable (LLCE) enabled tristate 0 1 D7 Confidential - NDA required page 152
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.2.24 SUBADDRESS 18 RAW DATA GAIN CONTROL Table 78 Raw data gain control RAWG7 to RAWG0 (SA 18)
Pr eli ND m A ina req ry uir ed
CONTROL BITS D7 to D0 RAWG4 1 0 RAWG3 1 0 GAIN RAWG7 0 0 RAWG6 1 1 RAWG5 1 0 RAWG2 1 0 RAWG1 1 0 RAWG0 1 0 255 (double ampl.) 0 (off) 128 (nominal level) 0 0 0 0 0 0 0 0 16.2.25 SUBADDRESS 19 RAW DATA OFFSET CONTROL Table 79 Raw data offset control RAWO7 to RAWO0 (SA 19) OFFSET CONTROL BITS D7 to D0 RAWO4 0 0 RAWO3 0 0 RAWO7 0 1 RAWO6 0 0 RAWO5 0 0 RAWO2 0 0 RAWO1 0 0 RAWO0 0 0 - 128 LSB 0 LSB +128 LSB 1 1 1 1 1 1 1 1 Confidential - NDA required page 153
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.2.26 SUBADDRESS 1A COLOR KILLER LEVEL CONTROL Table 80 SECAM Color Killer Level Control (SA 1A)
Pr eli ND m A ina req ry uir ed
CONTROL BITS D3 TO D0 STHR2 0 1 1 STHR1 0 1 1 SECAM COLOR KILLER LEVEL STHR3 0 0 1 STHR0 0 1 1 minimum level: color is switched on at low subcarrier levels recommended value maximum Table 81 PAL/NTSC Color Killer Level Control (SA 1A) PAL/NTSC COLOR KILLER LEVEL CONTROL BITS D7 TO D4 QTHR2 0 1 1 QTHR1 0 1 1 QTHR3 0 0 1 QTHR0 0 1 1 minimum: color is switched on at low subcarrier levels recommended value maximum 16.2.27 SUBADDRESS 1B MISC. CHROMA CONTROL Table 82 Automatic VCR/TV-Detection Threshold (SA 1B) D7,D6 AUTOMATIC VCR/TV-DETECTION THRESHOLD ATVT[1:0] 00 01 10 11 very sensitive to phase errors => early switching to fast horizontal time constant recommended value less sensitive to phase errors insensitive to phase errors => late switching to fast horizontal time constant Table 83 Automatic Color Limiter (SA 1B) D1 AUTOMATIC COLOR LIMITER disabled ACOL 0 1 active: reduces oversaturated color in case of nonstandard burst/picture_content relation (recommended) Confidential - NDA required page 154
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 84 Fast Sequence Correction (SA 1B) D0 FAST PAL/SECAM SEQUENCE CORRECTION
Pr eli ND m A ina req ry uir ed
FSQC 0 1 sequence correction enabled once per field (recommended) to be used, if immediate (linewise) sequence correction is required 16.2.28 SUBADDRESS 1C ENHANCED COMBFILTER CONTROL 1 Table 85 Horizontal Difference Gain (SA 1C) D7,D6 HORIZONTAL DIFFERENCE GAIN HODG[1:0] 00 01 10 11 lowest luminance bandwidth at horizontal transients higher luminance bandwidth at horizontal transients recommended value highest luminance bandwidth at horizontal transients Table 86 Vertical Difference Gain (SA 1C) D5,D4 VERTICAL DIFFERENCE GAIN VEDG[1:0] 00 01 10 11 highest luminance bandwidth at vertical transients lower luminance bandwidth at vertical transients recommended value lowest luminance bandwidth at vertical transients Table 87 Median Filter Gain (SA 1C) D3,D2 MEDIAN FILTER GAIN MEDG[1:0] 00 01 10 11 highest luminance bandwidth at high color saturation lower luminance bandwidth at high color saturation recommended value lowest luminance bandwidth at high color saturation Confidential - NDA required page 155
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 88 Combfilter Threshold (SA 1C) D1,D0 COMB THRESHOLD
Pr eli ND m A ina req ry uir ed
CMBT[1:0] 00 01 10 11 lowest comb strength for signals containing small chrominance content recommended value higher comb strength for signals containing small chrominance content highest comb strength for signals containing small chrominance content 16.2.29 SUBADDRESS 1D ENHANCED COMBFILTER CONTROL 2 Table 89 Vertical Difference Threshold (SA 1C) D1,D0 VERTICAL DIFFERENCE THRESHOLD VEDT[1:0] 00 01 10 11 highest comb strength for signals containing large vertical chrominance differences recommended value lower comb strength for signals containing large vertical chrominance differences lowest comb strength for signals containing large vertical chrominance differences Confidential - NDA required page 156
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.2.30 SUBADDRESSES 1E, 1F STATUS BYTES VIDEO DECODER (READ-ONLY REGISTER) Table 90 Status byte 1 video decoder (SA 1E)
Pr eli ND m A ina req ry uir ed
FUNCTION DATA BIT DCSTD[1:0] detected color standard: 00: No color [BW] 01: NTSC 10: PAL 11: SECAM D1, D0 WIPA white peak loop is activated; active HIGH D2 D3 D4 D5 D6 D7 GLIMB GLIMT HLCK NFLD gain value for active luminance channel is limited [min (bottom)]; active HIGH gain value for active luminance channel is limited [max (top)]; active HIGH slow time constant active in WIPA-mode; active HIGH SLTCA status bit for locked horizontal frequency; LOW = locked, HIGH = unlocked status bit for field length; LOW = nonstandard field length, HIGH = standard field length Table 91 Status byte 2 video decoder (SA 1F) I2C-BUS CONTROL BITS RDCAP COPRO FUNCTION DATA BIT D0 Ready for Capture (all internal loops locked); active HIGH Copy protected source detected according to Macrovision version up to 7.01 Macrovision encoded Colorstripe burst detected (any type) D1 COLSTR TYPE3 STTB FIDT D2 D3 D4 Macrovision encoded Colorstripe burst type 3 (4 line version) detected status bit for timebase of input signal; LOW = nonstable timebase (e.g. VCR) HIGH = stable timebase (e.g. broadcast/DVD-source) identification bit for detected field frequency; LOW = 50 Hz, HIGH = 60 Hz status bit for horizontal and vertical loop: LOW = both loops locked, HIGH = unlocked D5 HLVLN INTL D6 status bit for interlace detection, LOW = non interlaced, HIGH = interlaced D7 Confidential - NDA required page 157
Filename: SAA7115_Datasheet.fm
I2C-BUS CONTROL BITS
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.3 Programming Register Audio Clock Generation See equations in chapter 8.6 and examples on Table 28 on page 83, Table 30 on page 85 and Table 31 on page 87
Pr eli ND m A ina req ry uir ed
Table 92 Audio Master Clock: cycles per field (SA 30, SA 31, SA 32) AUDIO MASTER CLOCK: CYCLES PER FIELD SA 30 SA 31 SA 32 CONTROL BITS D7 to D0
ACPF4 ACPF3 ACPF7 ACPF6 ACPF5 ACPF2 ACPF1 ACPF0 ACPF15 ACPF14 ACPF13 ACPF12 ACPF11 ACPF10 ACPF9 ACPF8 ACPF17 ACPF16
16.3.1
SUBADDRESSES 30 TO 32 AMCLK CYCLES PER FIELD
16.3.2
SUBADDRESSES 34 TO 36 AMCLK NOMINAL INCREMENT
Table 93 Audio Master Clock: nominal increment (SA 34, SA 53, SA 36) AUDIO MASTER CLOCK: NOMINAL INCREMENT SA 34 SA 35 SA 36
CONTROL BITS D7 to D0
ACNI4 ACNI3
ACNI7
ACNI6
ACNI5
ACNI2
ACNI1
ACNI0
ACNI15
ACNI14
ACNI13
ACNI12
ACNI11
ACNI10
ACNI9
ACNI8
ACNI21
ACNI20
ACNI19
ACNI18
ACNI17
ACNI16
16.3.3
SUBADDRESS 38 RATIO AMXCLK TO ASCLK
Table 94 Clock ratio Audio Master Clock to Serial Clock (bit clock) ASCLK (SA 38) CLOCK RATIO AUDIO MASTER CLOCK TO SERIAL CLOCK SA 38
CONTROL BITS D5 TO D0
SDIV3 SDIV2
SDIV5
SDIV4
SDIV1
SDIV0
Refer to chapter 8.7
16.3.4
SUBADDRESS 39 RATIO ASCLK TO ALRCLK
Table 95 Clock ratio Serial Clock ASCLK to ALRCLK (channel select clock) (SA 39) CLOCK RATIO SERIAL CLOCK ASCLK TO ALRCLK SA 39
CONTROL BITS D5 TO D0
LRDIV3 LRDIV2
LRDIV5
LRDIV4
LRDIV1
LRDIV0
Refer to chapter 8.7
Confidential - NDA required
page 158
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.3.5
SUBADDRESS 3A AUDIO CLOCK CONTROL
Table 96 Audio clock control (SA 3A)
Pr eli ND m A ina req ry uir ed
ASCLK phase ASCLK edges triggered by falling edges of AMCLK ASCLK edges triggered by rising edges of AMCLK SCPH 0 1 D0 ALRCLK phase ALRCLK edges triggered by falling edges of ASCLK ALRCLK edges triggered by rising edges of ASCLK LRPH 0 1 D1 Audio Master clock Vertical Reference Vertical reference pulse is taken from internal decoder Vertical reference is taken form XRV-input (expansion port) AMVR 0 1 D2 Audio PLL mode PLL active, AMCLK is frame-locked to the incoming video signal (Vertical reference pulse) PLL open, AMCLK is free running APLL 0 D3 1 Audio PLL mode (only active if UCGC = 1) internal Audio master clock is divided by 4 internal Audio master clock is divided by 3 CGCDIV 0 1 D6 Audio clock: CGC Generation mode Second CGC (CGC2) bypassed (e.g. in case CGC2 is used for scaler backend clock generation): Audio clock as generated by the Audio PLL is output on pin AMCLK Second CGC (CGC2) in use for Audio clock generation: Enhances the jitter, performance of the generated audio master clock on pin AMCLK 0 1 UCGC D7 Confidential - NDA required page 159
Filename: SAA7115_Datasheet.fm
FUNCTION
NAME
LEVELS
BITS
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.4 16.4.1
Programming Register VBI data slicer SUBADDRESS 40 BASIC SLICER SETTINGS
Pr eli ND m A ina req ry uir ed
Slicer Set (40h) D4 Amplitude searching control bit HUNT_N 0 1 Amplitude searching active [default] Amplitude searching stopped Table 98 Framing Code Error (SA 40) Slicer Set (40h) D5 Framing Code Error control bit FCE 0 1 One framing code error allowed No framing code errors allowed Table 99 Hamming Check (SA 40) Slicer Set (40h) D6 Hamming Check control bit HAM_N 0 Hamming check for 2 bytes after framing code, depending on data type [default] No Hamming check 1 Confidential - NDA required page 160
Filename: SAA7115_Datasheet.fm
Table 97 Amplitude searching (SA 40)
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 100WSS-Check (SA 40) Slicer Set (40h) WSS525 CRC code check (1) D7 control bit CHKWSS 0 1
Pr eli ND m A ina req ry uir ed
All WSS525 packets are considered valid (provided that the start bit is detected), regardless of CRCERR Only WSS525 packets with CRCERR = 0 are considered valid
1. The VBI slicer will only track the amplitude of data that it considers to be valid; this tracking is important for optimal acquisition performance. If no valid data is found for several successive frames, then the slicer will enter amplitude searching (Hunting) mode until valid data is found again. CHKWSS alters the definition of "valid" data. Side effect if '1': if WSS525 data is present but containing incorrect CRC bits, the slicer will enter Hunting mode, and acquisition may intermittently fail even with an undistorted signal. Side effect if '0': if the slicer is set to acquire WSS525 from lines containing noise, or another data type, then false detections of "valid" data are more likely to occur which will upset the amplitude tracking mechanism. (Note that Hunting can still occur if the WSS525 start bits are never detected.)
Confidential - NDA required
page 161
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.4.2
SUBADDRESS 41 TO 57 LINE CONTROL REGISTER
Table 101LCR Register 2...24 (SA41 .... SA57)
Pr eli ND m A ina req ry uir ed
D7..D4 D3..D0 60HZ / 525 LINES STANDARDS 50HZ / 625 LINES STANDARDS DT[3:0] field 1 DT[3:0] field 2 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 do not acquire (active video) US Teletext (WST525) NABTS Moji do not acquire (active video) Euro Teletext (WST625) Euro Teletext with progammable Framing Code reserved Euro Closed Caption (CC625) VITC625 VPS reserved reserved US Closed Caption (CC525) CGMS (WSS525) VITC525 Gemstar2x Gemstar1x reserved Euro Wide Screen Signalling (WSS625) Open1 (5 MHz) reserved Open1 (5 MHz) reserved Open2 (5,7272 MHz) Open2 (5,7272 MHz) do not acquire (RAW) do not acquire (Test) do not acquire (RAW) do not acquire (Test) do not acquire (active video) do not acquire (active video)
1. Line Control Register LCR0 to LCR23 are assigned to one VBI dataline of a VBI region each. Line Control Register LCR24 is assigned to all other VBI data lines / active video lines.
LCR Register 2...24 (41h ....57h) (1)
16.4.3
SUBADDRESS 58 PROGRAMMABLE FRAMING CODE
Table 102Framing Code for programmable Data Types (SA58) Slicer Set (580h)
D7...0
Framing Code for programmable Data Types according to the DT table
control bits FC7...0 40h
[default]
Confidential - NDA required
page 162
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.4.4
SUBADDRESS 59 HORIZONTAL OFFSET
Table 103Horizontal Offset (SA 59, SA 5B)
Pr eli ND m A ina req ry uir ed
Slicer Set (59h, 5Bh) Horizontal Offset 5Bh,D2...0 59h,D7...0 control bits HOFF10...8 3h control bits HOFF7...0 47h recommended value 16.4.5 SUBADDRESS 5A VERTICAL OFFSET Table 104Vertical Offset (SA 5A, SA 5B) Slicer Set (5Ah, 5Bh) Vertical Offset 5Bh,D4 5Ah,D7...0 VOFF[7:0] 0 38 03 control bit VOFF[8] 0 1 0 control bits Minimum value 0 Maximum value 312 value for 50 Hz/625 lines input value for 60 Hz/525 lines input and ITU656 line counting (1)
(1)
0 0
06 03
value for 60 Hz/525 lines input and consistent field ID
for 60 Hz offsets; please refer to sect.8.2 and sect.8.4
1.
16.4.6
SUBADDRESS 5B FIELD OFFSET, MSB'S H/V-OFFSETS
Table 105 Field Offset, MSB's for Vertical and Horizontal Offsets (SA 5B) Slicer Set (5Bh)
D5
Vertical Trigger Edge
control bit VEP 0 1
VBI slicer triggers on the negative edge of the internal V123 V-sync (Default) VBI slicer triggers on the positive edge of the internal V123 V-sync
Confidential - NDA required
page 163
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 106 Field Offset, MSB's for Vertical and Horizontal Offsets (SA 5B) Slicer Set (5Bh) Field Offset D7 control bit FOFF 0 1
Pr eli ND m A ina req ry uir ed
no modification of internal field indicator, (default for 50 Hz/625 lines input sources) Invert field indicator (default for 60 Hz/525 lines input sources) Confidential - NDA required page 164
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.4.7
SUBADDRESS 5D: SLDOM CODES
Table 107 Sliced data output modes (SA 5D)
Pr eli ND m A ina req ry uir ed
Slicer Set (5Dh) D4 D3 D2 D1 D0 Sliced Data Output Mode SLDOM4 X SLDOM3 0 SLDOM2 0 SLDOM1 0 SLDOM0 0 Output from VBI slicer through I-port is disabled (VITX[1] function of SAA7114) no recoding X X X X X X X X 0 1 recode data values 00h and FFh to even parity values 03h and FCh ANC header with constant DID byte, programmable via SDID (addr. 5Eh) X 0 0 1 X ANC header (VIP-DID) for DT 1 - 8, A and B plus timing codes (empty packages) for lines 1 and after line 23 ANC header (VIP-DID) for DT 1 - 8, A and B no timing codes SAV-EAV framed output lines, with D2 as T-Bit of SAV/EAV byte X 0 1 0 X X 0 1 1 X X 1 T (1) X X SAV-EAV framing for the defined VBI standards of DT 1 - 8, A and B and DT 9 SAV-EAV framing for the defined VBI standards except for those Data Types which are accessible via I2C readback registers. Suppressed standards are: CC525/625, WSS525/625 (CGMS), Gemstar1x/Gemstar2x if regions overlap, output of sliced VBI and scaled video for a certain line X 1 T (1) 0 X X 1 T (1) 1 X 0 1 1 1 T (1) T (1) X X X X if regions overlap, output of video is suppressed for SAV-EAV framed sliced VBI lines
corresponds to the T-Bit of SAV/EAV codes 1.
Confidential - NDA required
page 165
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.4.8
SUBADDRESS 5E SDID CODES
Table 108 SDID codes (SA 5E)
Pr eli ND m A ina req ry uir ed
Slicer Set (5Eh) D5 D4 D3 D2 D1 D0 SDID codes SDID5 0 SDID4 0 SDID3 0 SDID2 0 SDID1 0 SDID0 0 SDID5..0 = 0h [default] 16.4.9 SUBADDRESS 5E (READ-ONLY REGISTER) Table 109 Slicer Status Bit (SA 5E), read only Slicer Status Bit (5Eh) read only Framing Code Valid D7 control bit FC8V 0 1 No Framing code (0 error) in the last frame detected Framing code with 0 error detected Table 110 Slicer Status Bit (SA 5E), read only Slicer Status Bit (5Eh) read only Framing Code Valid D6 control bit FC7V 0 1 No Framing code (1 error) in the last frame detected Framing code with 1 error detected Confidential - NDA required page 166
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.4.10 SUBADDRESS 66 TO 7F I2C READBACK OF DECODED VBI DATA (READ-ONLY REGISTER)
16.4.10.1 Subaddress 66 to 6A I2C Readback of Closed Caption Data (CC525 and CC625) (read-only register)
Pr eli ND m A ina req ry uir ed
Table 111 Closed Caption (CC525 and CC625) I2C readback (66h, ... , 6Ah) read only Register Content (1) REG. ADDR. 66 h D7 D6 D5 D4 D3 .. D0 CCH_7 CCH_6 CCH_5 CCH_4 CCH_3 .. CCH_0 free running field counter Status Header odd field even field being updated data erroneous being updated data erroneous CC payload data byte 1 of odd field CC payload data byte 2 of odd field 67 h 68 h 69 h CCO1_7 .. CCO1_0 CCO2_7 .. CCO2_0 CCE1_7 .. CCE1_0 CCE2_7 .. CCE2_0 CC payload data byte 1 of even field CC payload data byte 2 of even field 6A h
1. All decoded VBI data is written into the registers starting with the LSB of each register first until all data is stored
Table 112 Closed Caption (CC525 and CC625) data order in WSS I2C readback registers Register Name Register Addr. Register Bit
CCO1 / CCE1 6C h / 6F h D 4 4 4 D 3 3 3 CCO2 / CCE2 6D h / 70 h D 4 D 3
D 7 7 7
D 6 6 6
D 5 5 5
D 2 2 2
D 1 1 1
D 0 0 0
D 7
D 6
D 5
D 2
D 1 9 9
D 0 8 8
CC525 Bit No. (1) CC625 Bit No.
(1)
15 14 13 12 11 10 15 14 13 12 11 10
1.
CC data bits in order they appear in the VBI data line (beginning with bit 0)
Confidential - NDA required
page 167
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.4.10.2 Subaddress 6B to 71 I2C Readback of Closed Caption Data (WSS525 and WSS625) (read-only register)
Table 113 Widescreen Signalling (WSS525 and WSS625) I2C readback (6Bh, ... , 71h) read only
Pr eli ND m A ina req ry uir ed
REGISTER CONTENT (1) REG. ADDR. 6B h D7 D6 D5 D4 D3 .. D0 WSSH_7 WSSH_6 WSSH_5 WSSH_4 WSSH_3 .. WSSH_0 Status Header odd field even field being updated data erroneous being updated data erroneous free running field counter WSS payload data byte 1 of odd field WSS payload data byte 2 of odd field WSS payload data byte 2 of odd field 6C h 6D h 6E h 6F h 70 h 71 h WSSO1_7 .. WSSO1_0 WSSO2_7 .. WSSO2_0 WSSO3_7 .. WSSO3_0 WSSE1_7 .. WSSE1_0 WSSE2_7 .. WSSE2_0 WSSE3_7 .. WSSE3_0 WSS payload data byte 1 of even field WSS payload data byte 2 of even field WSS payload data byte 3 of even field
1. All decoded VBI data is written into the registers starting with the LSB of each register first until all data is stored
Table 114 Widescreen Signalling (WSS525 and WSS625) data order in WSS I2C readback registers Register Name Register Addr. Register Bit
WSSO1 / WSSE1 6C h / 6F h D 4 5 4 D 3 4 3 WSSO2 / WSSE2 6D h / 70 h D 4 D 3
WSSO3 / WSSE3 6E h / 71 h D 4 D 3
D 7 8 7
D 6 7 6
D 5 6 5
D 2 3 2
D 1 2 1
D 0 1 0
D 7
D 6
D 5
D 2
D 1
D 0 9 8
D 7 C -
D 6 -
D 5 -
D 2
D 1
D 0
WSS525 Bit No.
(1)
16 15 14 13 12 11 10 13 12 11 10 9
20 19 18 17 -
(2)
WSS625 Bit No.
(3)
1. 2. 3.
WSS525 data bits in order they appear in the VBI data line (beginning with bit 1) This bit carries the result of the CRC-check. It is `0' if the received CRC code is identical to the calculated CRC Code, else it is set to `1' WSS625 data bits in order they appear in the VBI data line (beginning with bit 0)
Confidential - NDA required
page 168
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.4.10.3 Subaddress 72 to 76 I2C Readback of Gemstar1x Data (read-only register)
Table 115 Gemstar1x I2C readback (72h, ... , 76h) read only
Pr eli ND m A ina req ry uir ed
Register Content (1) REG. ADDR. 72 h D7 D6 D5 D4 D3 .. D0 GS1H_7 GS1H_6 GS1H_5 GS1H_4 GS1H_3 .. GS1H_0 Status Header odd field even field being updated data erroneous being updated data erroneous free running field counter GS1 payload data byte 1 of odd field GS1 payload data byte 2 of odd field 73 h 74 h 75 h 76 h GS1O1_7 .. GS1O1_0 GS1O2_7 .. GS1O2_0 GS1E1_7 .. GS1E1_0 GS1E2_7 .. GS1E2_0 GS1 payload data byte 1 of even field GS1 payload data byte 2 of even field
1. All decoded VBI data is written into the registers starting with the LSB of each register first until all data is stored
Table 116 Gemstar 1x data order in Gemstar 1x I2C readback registers Register Name Register Addr. Register Bit
GS1O1 / GS1E1 73 h / 75 h D 4 4 D 3 3
GS1O2 / GS1E2 74 h / 76 h D 4 D 3
D 7 7
D 6 6
D 5 5
D 2 2
D 1 1
D 0 0
D 7
D 6
D 5
D 2
D 1 9
D 0 8
Gemstar 1x Bit No. (1)
15 14 13 12 11 10
1.
Gemstar 1x data bits in order they appear in the VBI data line (beginning with bit 0)
Confidential - NDA required
page 169
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.4.10.4 Subaddress 77 to 7F I2C Readback of Gemstar2x Data (read-only register)
Table 117 Gemstar2x I2C readback (77 h, ... , 7F h) read only
Pr eli ND m A ina req ry uir ed
Register Content (1) REG. ADDR. 77 h D7 D6 D5 D4 D3 .. D0 GS2H_7 GS2H_6 GS2H_5 GS2H_4 GS2H_3 .. GS2H_0 Status Header odd field even field being updated data erroneous being updated data erroneous free running field counter GS2 payload data byte 1 of odd field GS2 payload data byte 2 of odd field GS2 payload data byte 2 of odd field GS2 payload data byte 2 of odd field 78 h 79 h GS2O1_7 .. GS2O1_0 GS2O2_7 .. GS2O2_0 GS2O3_7 .. GS2O3_0 GS2O4_7 .. GS2O4_0 GS2E1_7 .. GS2E1_0 GS2E2_7 .. GS2E2_0 GS2E3_7 .. GS2E3_0 GS2E3_7 .. GS2E3_0 7A h 7B h GS2 payload data byte 1 of even field GS2 payload data byte 2 of even field GS2 payload data byte 3 of even field GS2 payload data byte 4 of even field 7C h 7D h 7E h 7F h
1. All decoded VBI data is written into the registers starting with the LSB of each register first until all data is stored
Table 118 Gemstar 2x data order in Gemstar 2x I2C readback registers Register Name
GS2O1 / GS2E1 78 h / 7C h GS2O2 / GS2E2 79 h / 7D h
GS2O1 / GS2E1 7A h / 7E h
GS2O2 / GS2E2 7B h / 7F h
Register Addr. Register Bit Gemstar 2x Bit No. (1)
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 76543210765432107654321076543210 7 6 5 4 3 2 1 0 1 5 1 4 1 3 1 2 1 1 1 0 9 8
2222111133222222 3210987610987654
1.
Gemstar 2x data bits in order they appear in the VBI data line (beginning with bit 0)
Confidential - NDA required
page 170
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.5 16.5.1
Programming Register - Interfaces and Scaler Part SUBADDRESS 80: GLOBAL SETTINGS
Pr eli ND m A ina req ry uir ed
Global Set (80H) D7 Continuous field mode control bit CMOD 0 field processing is done according the trigger conditions and window definitions of an enabled programming page permanent processing of the enabled task according to TEB (0x80) and TEA (0x80) settings until SW reset of the scaler. The vertical window definitions are ignored and the selected V-sync (see V_EAV1,VEAV0) defines the blanking interval 1 Table 120 Task Enable Control (SA 80) GLOBAL SET (80H) D5 D4 Task Enable Control control bits TEB control bits TEA task of register set A is disabled task of register set A is enabled task of register set B is enabled task of register set B is disabled x 0 x x 1 x 0 1 Confidential - NDA required page 171
Filename: SAA7115_Datasheet.fm
Table 119 Continuous Mode (continuous field mode) (SA 80)
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 121 I-port and scaler backend clock selection (SA 80) GLOBAL SET (80H) I - port and scaler backend clock selection MODE D3 D2 D1 D0
Pr eli ND m A ina req ry uir ed
CONTROL BITS I-PORT OUTPUT CLOCK SCALER BACKEND CLOCK ICKS ICKS ICKS ICKS 3 2 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 8-bit output mode (byte) at full clock rate: - full data rate at full clock rate line locked clock from decoder PLL clock from feature PLL (PLL2) 0 0 0 0 0 0 0 0 input clock at XCLK input of the X-Port external input clock from ICLK General 16-bit output mode: - full data rate at full clock rate line locked clock from decoder PLL input clock at XCLK input of the X-Port Luminance data (Y) at IPD[7:0] output pins clock from feature PLL (PLL2) and external input clock from ICLK decoded chrominance data (CB,CR) at HPD[7:0] output pins "DMSD2-Legacy" 16-bit output mode - half data rate at half clock rate line locked clock from decoder PLL line locked clock / 2 from decoder PLL 1 1 0 0 0 0 0 1 Luminance data (Y) at IPD[7:0] output pins, decoded chrominance data (CB,CR) at HPD[7:0] output pins input clock at XCLK input of the X-Port clock from feature PLL (PLL2) input clock at XCLK input of the X-Port divided by 2 clock from feature PLL (PLL2) divided by 2 "CREF" function is provided on in IDQ. As an alternative IDQ can also be used as clock (adjustable delay via IPCK[3:2]) 1 0 1 0 external input clock from ICLK external input clock 1 from ICLK divided by 2 1 1 1 1 0 1 1 "Zoomed Video" 16-bit output mode: - half data rate at half clock rate line locked clock / 2 from decoder PLL 1 1 1 1 0 0 1 1 0 1 0 1 (Luminance data (Y) at IPD[7:0] output pins, decoded chrominance data (CB,CR) at HPD[7:0] output pins) IDQ obsolete input clock at XCLK input of the X-Port divided by 2 reserved clock from feature PLL (PLL2) divided by 2 Confidential - NDA required page 172
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 122 Vertical sync and Field ID source selection (SA 81) GLOBAL SET (81H) Vertical sync and Field ID source selection for the generation of V- and F-Bit in SAV / EAV codes and the V-sync and FID function on pins IGPV and IGP0/1 D1 control bits V_EAV1 D0 control bits V_EAV0
Pr eli ND m A ina req ry uir ed
V-blanking signal from scaler input (VBLNK_CCIR from decoder or XRV from X-port) with corresponding Field ID (EVEN_CCIR or detected from X-port) 0 0 1 programmable V-gate signal VGATE_L from decoder (see VSTA,VSTO reg. 0x15 and 0 0x16 of decoder part) or XRV from X-port with corresponding Field ID (but detected ID from X-port shifted by one line) LCR table controlled V-gate and Field ID from the text data path 1 1 CONLV controlled region and page dependent V-gate from scaler data path, Field ID is snatched to scalers V-trigger (see V123 timing) 0 1 Table 123 Characteristic of the retimed V and F signals (SA 81) GLOBAL SET (81H) D2 change of 1/2 line characteristic of the retimed V and F signals (see IGPV and IGP0/1 functions, signals VS_i and FID_i ) control bits FTIME FID `0' -> V-edge after End Of Line (EOL), FID change 0->1 after Start Of Line (SOL) FID `1' -> V-edge after SOL, FID change 1->0 after EOL upper V and FID timing characteristics change from EOL to SOL and .vv. 0 1 16.5.2 SUBADDRESS 83 TO 87: GLOBAL INTERFACE CONFIGURATIONS Table 124 X-port output clock phase control (SA 83) GLOBAL SET (83H) D5 D4 X-port output clock phase control control bits XPCK1 control bits XPCK0 XCLK inverted input/output phase 0 0 Recommended setting, if XCLK-pin is used as input Recommended setting, if XCLK-pin is used as output 0 1 ICLK inverted and phase shifted by about 3 nsec 1 0 1 1 Confidential - NDA required page 173
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 125 X-port I/O enable control (SA 83) GLOBAL SET (83H) X-port I/O enable control, controls pins XPD[7:0], XDQ, XRH, XRV and XCLK D2 control bits XRQT x x x x D1 control bits XPE1 0 0 1 1 x x D0 control bits XPE0 0 1 0 1 x x
Pr eli ND m A ina req ry uir ed
X - port output is disabled by software X - port output is enabled by software X - port output is enabled by pin XTRI at "0" X - port output is enabled by pin XTRI at "1" XRDY output signal is A/B task flag from event handler (A = "1") XRDY output signal is ready signal from scaler path (XRDY = "1" means scaler is ready to receive data) 0 1 Table 126 I-port output signal definitions IGPH / IGPV (SA 84) GLOBAL SET (84H) D3 D2 D1 D0 I - port output signal definitions IGPH / IGPV control bits IDV1 x x control bits IDV0 x x control bits IDH1 0 0 control bits IDH0 0 1 IGPH is a h -gate signal, framing the scaler output IGPH is an extended h-gate (framing h-gate during scaler output and scaler input H-reference outside the scaler window) IGPH is a horizontal trigger pulse on the rising edge of h-gate IGPH is a horizontal trigger pulse on the rising edge of extended h-gate x x x x 1 1 x 0 1 x IGPV is a v - gate signal as defined by V_EAV[81[1:0]] 0 0 IGPV is a V-sync like signal, as defined by V_EAV, with emulated 1/2 line characteristic (VS_i) 0 1 1 1 0 1 x x x x IGPV is a vertical trigger pulse on the rising edge of the v-gate IGPV is a vertical trigger pulse on the rising edge of the V-sync like signal x Confidential - NDA required page 174
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 127 I-port signal definitions IGP0 (SA 84) GLOBAL SET (84H AND 86H) I - port signal definitions IGP0 86H D4 control bits IDG02 0 0 84H D5 control bits IDG01 0 0 84H D4 control bits IDG00 0 1
Pr eli ND m A ina req ry uir ed
IGP0 is output field ID, as defined by V_EAV[81[1:0]] IGP0 is a field ID, as defined by V_EAV and FTIME[81[2]], with emulated 1/2 line characteristic (FID_i) IGP0 is sliced data flag, framing the sliced VBI data at the I-port IGP0 is A/B task flag, as defined by CONLH [90[7]] IGP0 is the output FIFO almost filled flag IGP0 is the output FIFO almost full flag, level to be programmed in addr. 86h 0 0 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 IGP0 is the output FIFO almost empty flag, level to be programmed in addr. 86h IGP0 is set to "0" (default polarity) Table 128 I-port signal definitions IGP1 (SA 84) GLOBAL SET (84H AND 86H) 86H D5 control bits IDG12 0 0 84H D7 control bits IDG11 0 0 84H D6 control bits IDG10 0 1 I - port signal definitions IGP1 IGP1 is output field ID, as defined by V_EAV[81[1:0]] IGP1 is a field ID, as defined by V_EAV and FTIME[81[2]], with emulated 1/2 line characteristic (FID_i) IGP1 is sliced data flag, framing the sliced VBI data at the I-port IGP1 is A/B task flag, as defined by CONLH [90[7]] IGP1 is the output FIFO almost filled flag IGP1 is the output FIFO almost full flag, level to be programmed in addr. 86h 0 0 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 IGP1 is the output FIFO almost empty flag, level to be programmed in addr. 86h IGP1 is set to "0" (default polarity) Confidential - NDA required page 175
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 129 I-port reference signal polarities (SA 85) GLOBAL SET (85H) I - port reference signal polarities D4 control bits IGP1P x x D3 control bits IGP0P x x D2 control bits IRVP x x D1 control bits IRHP x x D0 control bits IDQP 0 1 x x x x x x
Pr eli ND m A ina req ry uir ed
IDQ at default polarity (`1' active) IDQ is inverted IGPH at default polarity (`1' active) IGPH is inverted IGPV is inverted IGP0 is inverted IGP1 is inverted IGPV at default polarity (`1' active) IGP0 at default polarity IGP1 at default polarity x x x x x x x 0 x x x x x 1 x x x 0 x x x 1 0 1 x x 0 x x x x x x 1 Confidential - NDA required page 176
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 130 I-port signal definitions (SA 85)
Pr eli ND m A ina req ry uir ed
GLOBAL SET (85H) D7 D6 D5 I - port signal definitions IPD[7:0] (HPD[7:0]) video data limited to range 1 to 254 video data limited to range 8 to 247 control bits ISWP1 x x control bits ISWP0 x x control bits ILLV 0 1 x D-word byte swap, influences serial output timing D0 D1 D2 D3 => FF 00 00 SAV CB0 Y0 CR0 Y1 D1 D0 D3 D2 => 00 FF SAV 00 Y0 CB0 Y1 CR0 D2 D3 D0 D1 => 00 SAV FF 00 CR0 Y1 CB0 Y0 D3 D2 D1 D0 => SAV 00 00 FF Y1 CR0 Y0 CB0 0 0 0 1 1 1 0 1 x x x Table 131 I-port signal definitions (SA 86) GLOBAL SET (86H) D3 D2 D1 D0 I - port signal definitions control bits FFL1 x control bits FFL0 x control bits FEL1 0 0 1 1 x control bits FEL0 0 FAE fifo flag almost empty level < 16 D-words < 8 D-words < 4 D-words = 0 D-words x x x x x x 1 0 1 x FAF fifo flag almost full level >= 16 D-words >= 24 D-words >= 28 D-words = 32 D-words 0 0 0 1 1 1 0 1 x x x x x x Confidential - NDA required page 177
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 132 I-port Packing mode (continuous pixel mode) (SA 86) Global Set (86H) I-Port Packing mode D7 control bit IMPAK 0
Pr eli ND m A ina req ry uir ed
data packing controlled by ITRDY pin data packing is done internally, by HREF synchronous delayed trigger pulses. The trigger delay can be defined per active data type (data of page A, page B and data of text path C). Trigger signals are generated by the Pulse Generator (see reg. F6h to FBh parameters PGHAPS, PGHBPS, PGHCPS) 1 Table 133 I-port signal definitions,FFD1,0 (SA 86) GLOBAL SET (86H) D6 I - port signal definitions, FFD1,0 related to subaddr. "84" control bits VITX 0 1 I-port video data output is inhibited I-port video data are transferred Note: text data transfer is now controlled by new SLDOM control byte (reg. 0x5D) Confidential - NDA required page 178
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 134 I-port output clock and gated clock phase control (SA 87)
Pr eli ND m A ina req ry uir ed
GLOBAL SET (87H) D7 D6 D5 D4 I-port input/output clock and gated clock phase control (IDQ, ICLK) control bits IPCK3 x x x control bits IPCK2 x x x control bits IPCK1 0 0 1 control bits IPCK0 0 1 1 ICLK inverted input/output phase Recommended setting, if ICLK-pin is used as input Recommended setting, if ICLK-pin is used as output ICLK inverted and phase shifted by about 3 nsec x x 1 0 Note: IPCK[3:2] only effects the gated clock or qualifier on pin IDQ in DMSD-legacy mode (see also addr. 80h, ICKS[3:0]) tbf tbf tbf tbf 0 0 1 1 0 1 0 1 x x x x x x x x Table 135 I-port I/O control (SA 87) GLOBAL SET (87H) D1 D0 I-port I/O control (IPD[7:0], IDQ, IGPH, IGPV, IGP0, IGP1) control bits IPE1 0 control bits IPE0 0 I - port output is disabled by software (including the H-port HPD[7:0] if used as 16-bit extension for the I-port) I - port output is enabled by software I - port output is enabled by pin ITRI at "0" I - port output is enabled by pin ITRI at "1" 0 1 1 1 0 1 Confidential - NDA required page 179
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.5.3
SUBADDRESS 88: SLEEP AND POWER SAVE CONTROL
Table 136 Power save control (SA 86)
Pr eli ND m A ina req ry uir ed
GLOBAL SET (88H) power save control D3 D1 D0 control bits SLM3 x x control bits SLM1 x x control bits SLM0 0 1 decoder and VBI slicer are in operational mode decoder and VBI slicer are in power down Note: scaler only operates, if scaler input and ICLK source is the X-port (refer to addr. 80h and 91/C1h) scaler is in operational mode scaler is in power down Note: scaler in power down stops I-port output!! audio clock generation active x 0 x x 1 x x x 0 audio clock generation in power down and output disabled 1 x x Table 137 ADC-port output control/ startup control (SA 88) GLOBAL SET (88H) D7 D6 D5 D4 ADC-port output control/ startup control control bits control bits control bits control bits CH2EN x x CH1EN x x SWRST x x DPROG 0 1 DPROG ='0' after reset DPROG = '1', can be used to assign that the Device has been PROGrammed.This bit can be monitored in the scalers status byte, bit PRDON. If DPROG was set to `1' and PRDON status bit shows a `0' a power or startup fail has occurred scaler path is reset to it's `idle' state, software reset scaler is switched back to operation AD1x analog channel is active AD2x analog channel is active AD1x analog channel is in power-down mode AD2x analog channel is in power-down mode x x x x 0 1 x x x x x x x x 0 1 x x x x x x 0 1 Confidential - NDA required page 180
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.5.4
SUBADDRESS 8F (READ-ONLY REGISTER): STATUS INFORMATION SCALER PART
Pr eli ND m A ina req ry uir ed
Table 138 Status information scaler bits (SA 8F) I2C-BUS STATUS BITS NOTE: STATUS INFO IS UNSYNCHRONIZED AND SHOWS THE ACTUAL STATUS AT THE TIME OF IIC-READ FUNCTION DATA BIT FIDSCO FIDSCI status of the field sequence ID at the scalers output, scaler processing dependent D0 status of the field sequence ID at the scalers input D1 ERR_OF error flag of scalers output formatter, normally set, if the output processing needs to be interrupted, due to input/output data rate conflicts, e.g. if output data rate is much too low and all internal FIFO capacity used status of the internal `FIFO overflow' flag D2 PRDON FFOV FFIL ITRI copy of bit DPROG, can be used to detect power up and start up fails status of the internal `FIFO almost filled' flag D3 D4 D5 status on input pin ITRI, if not used for tri-state control, usable as hardware flag for software use D6 D7 XTRI status on input pin XTRI, if not used for tri-state control, usable as hardware flag for software use 16.5.5 SUBADDRESS 90: EVENT HANDLER CONTROL Table 139 Event handler control (SA 90; SA C0) REGISTER SET A (90H) AND B (C0H) event handler control D2 D1 D0 control bits RPTSK x x control bits STRC1 0 0 control bits STRC0 0 1 event handler triggers immediately after finishing a task event handler triggers with next V sync event handler triggers with field ID = "0" event handler triggers with field ID = "1" x x 1 1 x x 0 1 x x if active task is finished, handling is taken over by the next task 0 1 active task is repeated once, before handling is taken over by the next task Confidential - NDA required page 181
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 140 Event handler control (SA 90; SA C0) REGISTER SET A (90H) AND B (C0H) event handler control D5 control bits FSKP2 0 0 D4 control bits FSKP1 0 0 D3 control bits FSKP0 0 1
Pr eli ND m A ina req ry uir ed
active task is carried out directly 1 field is skipped before active task is carried out .. fields are skipped before active task is carried out 6 fields are skipped before active task is carried out 7 fields are skipped before active task is carried out .. .. .. 1 1 1 1 0 1 Table 141 Event handler control (SA 90; SA C0) REGISTER SET A (90H) AND B (C0H) event handler control D7 D6 control bits CONLH x x control bits OFIDC 0 1 output field ID is field ID from scaler input output field ID is task status flag, which changes every time an selected task is activated (not synchronized to input field ID) scaler SAV/EAV byte bit D7 and task flag = `1', default scaler SAV/EAV byte bit D7 and task flag = `0' 0 x 1 x 16.5.6 SUBADDRESS 91 TO 93: SCALER INPUT AND I-PORT OUTPUT CONFIGURATION Table 142 Scaler Input Format and ConfigurationFormat Control (SA 91; SA C1) REGISTER SET A (91H) AND B (C1H) D2 D1 D0 Scaler Input Format and Configuration Format Control control bits FSC2 x x control bits FSC1 x x control bits FSC0 0 1 input is YUV 4:2:2 like sampling scheme input is YUV 4:1:1 like sampling scheme FSC[2:1] only to be used, if X-port input source don't provide chroma information for every input line (Note: X-port input stream must contain "dummy" chroma bytes) chroma is provided every line, default chroma is provided every 2nd line chroma is provided every 3rd line chroma is provided every 4th line 0 0 1 1 0 1 0 1 x x x x Confidential - NDA required page 182
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 143 Scaler Input Format and ConfigurationSource Selection (SA 91; SA C1) REGISTER SET A (91H) AND B (C1H) Scaler Input Format and Configuration Source Selection D7 control bits x x D6 control bits HLDFV x x D5 control bits x x D4 control bits x x D3 control bits 0 1
Pr eli ND m A ina req ry uir ed
CONLV SCSRC1 SCSRC0 SCRQE only if XRQT subaddr. "83" = `1': scaler input source reacts on 7115 request scaler input source is a continuous data stream, which can not be interrupted (must be `1', if 7115 decoder part is source of scaler or XRQT subaddr."83" = `0') scaler input source is data from decoder, data type is provided according to table Table 6 on page 43 scaler input source is YUV data from X-port x x x x x x 0 0 1 0 1 0 x x x scaler input source is raw digital CVBS from selected analog channel, for backward compatibility only, further use is not recommended scaler input source is raw digital CVBS (or 16 bit Y + UV, if no 16 bit output are active) from X-port x x x x 1 x x 1 x x x x x SAV/EAV code bits D6 and D5 (F and V) may change between SAV and EAV SAV/EAV code bits D6 and D5 (F and Vbit) are synchronized to scalers output line start 0 1 x SAV/EAV code bit D5 (V-bit) and V-gate on pin IGPV as generated by the internal processing, see Fig.38 SAV/EAV code bit D5 (V-bit) and V-gate are inverted 0 x x x 1 x x x x Table 144 X-port input Reference signal definitions (SA 92; SA C2) REGISTER SET A(92H) AND B (C2H) D3 D2 D1 D0 X - port input Reference signal definitions control bits x x x control bits XDH x x x x control bits XDQ x x control bits XCKS 0 x x 1 XCODE x XCLK input clock and XDQ input qualifier are needed data are qualified at XDQ input at "1" data are qualified at XDQ input at "0" data rate is defined by XCLK only, no XDQ signal used 0 1 x x rising edge of XRH input is horizontal reference reference signals are taken from XRH and XRV x 0 x x falling edge of XRH input is horizontal reference x 1 x x 0 x x reference signals are decoded from EAV and SAV 1 x x Confidential - NDA required page 183
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 145 Scaler Input Reference signal definitions (SA 92; SA C2) REGISTER SET A(92H) AND B (C2H) Scaler Input Reference signal definitions D7 control bits XFDV x x x x x D6 control bits XFDH x x x x D5 control bits XDV1 x x D4 control bits XDV0 0 1 x x
Pr eli ND m A ina req ry uir ed
rising edge of XRV input and decoder V123 is vertical reference falling edge of XRV input and decoder V123 is vertical reference XRV is a V- sync or V-gate signal XRV is a frame sync, V - pulses are generated internally on both edges of FS input 0 1 x X-port field ID is state of XRH at reference edge on XRV (defined by XFDV) field ID (decoder and X-port field ID) is inverted 0 x x 1 x x x x reference edge for field detection is falling edge of XRV reference edge for field detection is rising edge of XRV 0 x x 1 x x Table 146 I-port output formats and configuration (SA 93; SA C3) REGISTER SET A(93H) AND B (C3H) I - port output formats and configuration D4 D3 D2 D1 D0 control bits FOI1 x x control bits FOI0 x x control bits FSI2 0 0 control bits FSI1 0 0 control bits FSI0 0 1 4:2:2 D word formatting 4:1:1 D word formatting 4:2:0, only every 2nd line Y + UV output, in between Y only output 4:1:0, only every 4th line Y + UV output, in between Y only output Y only not defined not defined not defined x x x x 0 0 1 1 0 1 x x x x x 1 1 1 1 x x x x 0 0 1 1 x x x x 0 1 0 1 x x x x x x x number of leading Y only lines, before 1rst Y + UV line is output: 00 = no leading Y only line .. 11= 3 leading Y only lines 0 0 1 1 0 1 0 1 Confidential - NDA required page 184
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 147 I-port output formats and configuration (SA 93; SA C3) REGISTER SET A (93H) AND B (C3H) I - port output formats and configuration D7 control bits ICODE x x D6 control bits INS80 x x D5 control bits FYSK 0 1 x x x x
Pr eli ND m A ina req ry uir ed
all lines will be output skip the number of leading Y only lines, as defined by FOI1,0 remaining blanking intervals and cycles with invalid data are filled with 0x00 x x 0 1 x x remaining blanking intervals are filled with 0x80 for chroma and 0x10 for luma bytes and data are hold during cycles with invalid data no ITU656 like SAV,EAV codes are available 0 ITU656 like SAV,EAV codes are inserted in the output data stream, framed by a qualifier 1 16.5.7 SUBADDRESS 94 TO 9B: SCALER INPUT ACQUISITION WINDOW DEFINITION Table 148 Horizontal input acquisition window definition offset (SA 94, SA95; SA C4, SAC5) REGISTER SET A (94H ....95H) AND B (C4H ... C5H) horizontal input acquisition window definition offset in X (horizontal) direction 95H / C5H D3 .. D0 XO11..8 0 0 1 0 0 1 94H / C4H D7..D4 XO7..4 0 0 1 0 94H / C4H D3 .. D0 XO3..0 0 1 reference for counting are luminance samples a minimum of `2' should be kept, due to a line counting mismatch odd offsets are changing the UV sequence in the output stream to VU sequence maximum possible pixel offset = 4095 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 Table 149 Horizontal input acquisition window definition input window length (SA 96, SA97; SA C6, SAC7) REGISTER SET A (96H ....97H) AND B (C6H ... C7H) horizontal input acquisition window definition input window length in X (horizontal) direction reference for counting are luminance samples 97H / C7H D3 .. D0 XS11..8 0 0 0 0 96H / C6H D7..D4 XS7..4 0 0 0 96H / C6H D3 .. D0 XS3..0 0 0 0 no output 0 0 0 0 0 0 0 0 0 odd lengths are allowed, but will be rounded up to even lengths ... maximum possible no. of input pixels = 4095 0 0 0 0 1 ... ... ... 1 1 1 1 1 1 1 1 1 1 1 1 Confidential - NDA required page 185
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 150 Vertical input acquisition window definition offset (SA 98, SA99; SA C8, SA C9) REGISTER SET A (98H ....99H) AND B (C8H ... C9H) vertical input acquisition window definition offset in Y (vertical) direction 99H / C9H D3 .. D0 YO11..8 0 0 98H / C8H D7..D4 YO7..4 0 0 98H / C8H D3 .. D0 YO3..0 0 0
Pr eli ND m A ina req ry uir ed
Note: for trigger condition (addr. 90, STRC[1:0])!= `00' YO + YS > (number of input lines/field -2), will result in field dropping maximum line offset = 4095 offsets > (number of input lines/field -2) will result in field dropping 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 Table 151 Vertical input acquisition window definition (SA 9A, SA 9B; SA CA, SA CB) REGISTER SET A (9AH ....9BH) AND B (CAH ... CBH) vertical input acquisition window definition input window length in Y (vertical) direction 9BH / CBH D3 ..D0 YS11..8 0 0 9AH / CAH D7..D4 YS7..4 0 0 9AH / CAH D3 ..D0 YS3..0 0 0 Note: for trigger condition (addr. 90, STRC[1:0])!= `00' YO + YS > (number of input lines/field -2), will result in field dropping maximum possible number of input lines = 4095 lengths > (number of input lines/field -2) will result in field dropping 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ... ... ... 1 1 1 1 1 1 1 1 1 1 1 1 Table 152 Field processing mode (SA 9A; SACB) Register Set A (9Bh) and B (CBh) D7 Field mode (continuous task mode) control bit FMOD 0 vertical processing is defined by offset and length parameters, if a V trigger occurs before YS input lines are processed field dropping may occur vertical processing is defined by start and end line parameters (YO = start line, YS = end line), if a V trigger occurs before end line is reached, the vertical window is cut, if the start line is not reached at V trigger the processing is started, if the trigger occurs inside the defined region 1 Confidential - NDA required page 186
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.5.8
SUBADDRESS 9C TO 9F: SCALER OUTPUT WINDOW DEFINITION
Table 153 Horizontal output acquisition window definition (SA 9C, SA 9D; SA CC, SA CD)
Pr eli ND m A ina req ry uir ed
REGISTER SET A (9CH ....9DH) AND B (CCH ... CDH) 9DH / CDH D3 ..D0 9CH / CCH H D7..D4 9CH / CCH D3 ..D0 horizontal output acquisition window definition number of desired output pixel in X (horizontal) direction reference for counting are luminance samples XD11..8 XD7..4 XD3..0 no output 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 odd lengths are allowed, but will be filled up to even lengths ... 0 0 0 0 1 ... ... ... maximum possible number of input pixels= 4095 if the desired output length is greater, than the number of scaled output pixels, the last scaled pixel is repeated 1 1 1 1 1 1 1 1 1 1 1 1 Table 154 Vertical output acquisition window definition (SA 9E, SA 9F; SA CE, SA CF) REGISTER SET A (9EH ....9FH) AND B (CEH ... CFH) vertical output acquisition window definition number of desired output lines in Y (vertical)direction 9FH / CFH D3 ..D0 9EH / CEH D7..D4 9EH / CEH D3 ..D0 YD11..8 YD7..4 YD3..0 no output 1 pixel ... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ... ... ... maximum possible number of output lines = 4095 if the desired output length is greater, than the number of scaled output lines, the processing is cut 1 1 1 1 1 1 1 1 1 1 1 1 Confidential - NDA required page 187
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.5.9
SUBADDRESS A0 TO A2: PRESCALING AND FIR FILTERING
Table 155 Horizontal integer prescaling ratio XPSC (SA A0; SA D0)
Pr eli ND m A ina req ry uir ed
REGISTER SET A (A0H) AND B (D0H) D5 D4 D3 D2 D1 D0 Horizontal integer prescaling ratio XPSC control bits XPSC5 0 0 0 .. 1 control bits XPSC4 0 0 0 1 control bits XPSC3 0 0 0 1 control bits XPSC2 0 0 0 1 control bits XPSC1 0 0 1 1 control bits XPSC0 0 1 0 1 !! not allowed !! down scale = 1 down scale = 1/2 .. .. .. .. .. down scale = 1/63 Table 156 Horizontal prescaler accumulation Sequence Length XACL (SA A1; SA D1) REGISTER SET A (A1H) AND B (D1H) D5 D4 D3 D2 D1 D0 Horizontal prescaler accumulation Sequence Length XACL control bits XACL5 0 0 .. 1 control bits XACL4 0 0 1 control bits XACL3 0 0 1 control bits XACL2 0 0 1 control bits XACL1 0 0 1 control bits XACL0 0 1 1 accu length = 1 accu length = 2 .. .. .. .. .. accu length = 64 Confidential - NDA required page 188
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 157 Prescaler DC gain and FIR prefilter Control (SA A2; SA D2) REGISTER SET A (A2H) AND B (D2H) Prescaler DC gain and FIR prefilter Control D3 control bits XC2_1 x x x x x x x x D2 control bits 0 D1 control bits 0 D0 control bits 0
Pr eli ND m A ina req ry uir ed
XDCG2 0 0 0 1 1 1 1 x XDCG1 0 1 1 0 0 1 1 x XDCG0 1 0 1 0 1 0 1 x prescaler output is renormalized by gain factor = 1 gain factor = 1/2 gain factor = 1/4 gain factor = 1/8 gain factor = 1/16 gain factor = 1/32 gain factor = 1/64 gain factor = 1/128 weighting of all accumulated samples is factor `1' e.g. XACL = 4 => sequence 1+ 1+ 1+ 1+ 1 0 weighting of samples inside sequence is factor `2' e.g. XACL = 4 => sequence 1+ 2+ 2+ 2+ 1 1 x x x Table 158 Prescaler DC gain and FIR prefilter Control (SA A2; SA D2) REGISTER SET A (A2H) AND B (D2H) D7 D6 D5 D4 Prescaler DC gain and FIR prefilter Control control bits PFUV1 x x x control bits PFUV0 x x x control bits PFY1 0 0 control bits PFY0 0 1 1 x x luminance FIR filter bypassed H_y(z) = 1/4 * (1 2 1) H_y(z) = 1/8 * (-1 1 1.75 4.5 1.75 1 -1) H_y(z) = 1/8 * (1 2 2 2 1) H_uv(z) = 1/4 * (1 2 1) chrominance FIR filter bypassed H_uv(z) = 1/32 * (3 8 10 8 3) H_uv(z) = 1/8 * (1 2 2 2 1) x x 1 x x 0 1 0 0 0 1 1 1 0 1 x x x x Confidential - NDA required page 189
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.5.10 SUBADDRESS A4 TO A6: BRIGHTNESS, CONTRAST AND SATURATION CONTROL Table 159 Luminance Brightness Setting (SA A4; SA D4)
Pr eli ND m A ina req ry uir ed
REGISTER SET A (A4H) AND B (D4H) Luminance Brightness Setting D7 D6 D5 D4 D3 D2 D1 D0 control bits BRIG7 0 1 1 control bits BRIG6 0 0 1 control bits BRIG5 0 0 1 control bits BRIG4 0 0 1 control bits BRIG3 0 0 1 control bits BRIG2 0 0 1 control bits BRIG1 0 0 1 control bits BRIG0 0 0 1 nominal value = 128 Table 160 Luminance Contrast Setting (SA A5; SA D5) REGISTER SET A (A5H) AND B (D5H) Luminance Contrast Setting D7 D6 D5 D4 D3 D2 D1 D0 control bits 0 0 0 0 control bits 0 0 1 1 control bits 0 0 0 1 control bits 0 0 0 1 control bits 0 0 0 1 control bits 0 0 0 1 control bits 0 0 0 1 control bits 0 1 0 1 CONT7 CONT6 CONT5 CONT4 CONT3 CONT2 CONT1 CONT0 gain = 0 gain = 1/64 nominal gain = 64 gain = 127/64 Table 161 Chrominance Saturation Setting (SA A6; SA D6) REGISTER SET A (A6H) AND B (D6H) D7 D6 D5 D4 D3 D2 D1 D0 Chrominance Saturation Setting control bits SATN7 0 0 0 0 control bits SATN6 0 0 1 1 control bits SATN5 0 0 0 1 control bits SATN4 0 0 0 1 control bits SATN3 0 0 0 1 control bits SATN2 0 0 0 1 control bits SATN1 0 0 0 1 control bits SATN0 0 1 0 1 gain = 0 gain = 1/64 nominal gain = 64 gain = 127/64 Confidential - NDA required page 190
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.5.11 SUBADDRESS A8 TO AE: HORIZONTAL PHASE SCALING Table 162 Horizontal Luminance Scaling Increment (SA A8, SA A9; SA D8, SA D9)
Pr eli ND m A ina req ry uir ed
REGISTER SET A (A8H ....A9H) AND B (D8H ... D9H) Horizontal Luminance Scaling Increment A9H / D9H D7..D4 A9H / D9H D3 ..D0 A8H / D8H D7..D4 XSCY7..4 0 0 A8H / D8H D3 ..D0 XSCY3..0 0 0 XSCY15..12 0 0 XSCY11..8 0 0 scale = 1024/1 (theoretical) zoom 0 0 0 0 0 0 0 0 scale = 1024/294, lower limit defined by data path structure scale = 1024/1023 zoom scale = 1, equals 1024 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 scale = 1024/1025 down scale scale = 1024/8191 down scale Table 163 Horizontal Luminance Phase Offset (SA AA; SA DA) REGISTER SET A (AAH) AND B (DAH) Horizontal Luminance Phase Offset D7 D6 D5 D4 D3 D2 D1 D0 control bits XPHY7 0 0 0 1 control bits XPHY6 0 0 0 1 control bits XPHY5 0 0 1 1 control bits XPHY4 0 0 0 1 control bits XPHY3 0 0 0 1 control bits XPHY2 0 0 0 1 control bits XPHY1 0 0 0 1 control bits XPHY0 0 1 0 1 offset = 0 offset = 1/32 pixel offset = 32/32 = 1 pixel offset = 255/32 pixel Table 164 Horizontal Chrominance Scaling Increment (SA AC, SA AD; SA DC, SA DD) REGISTER SET A (ACH ....ADH) AND B (DCH ... DDH) ADH / DDH D7..D4 ADH / DDH D3 ..D0 XSCC11..8 0 0 ACH / DCH D7..D4 XSCC7..4 0 0 ACH / DCH D3 ..D0 XSCC3..0 0 0 Horizontal Chrominance Scaling Increment XSCC15..12 0 0 Note: this value must be set to the luminance value XSCY / 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 Confidential - NDA required page 191
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 165 Horizontal Chrominance Phase Offset (SA AE; SA DE) REGISTER SET A (AEH) AND B (DEH) D7 control bits XPHC7 0 0 1 D6 control bits XPHC6 0 0 1 D5 control bits XPHC5 0 0 1 D4 control bits XPHC4 0 0 1 D3 control bits XPHC3 0 0 1 D2 control bits XPHC2 0 0 1 D1 control bits XPHC1 0 0 1 D0 control bits XPHC0 0 1 1
Pr eli ND m A ina req ry uir ed
Horizontal Chrominance Phase Offset Note: this values must be set to XPHY/2 16.5.12 SUBADDRESS B0 TO BF: VERTICAL SCALING CONTROL Table 166 Vertical Luminance Scaling Increment (SA B0, SA B1; SA E0, SA E1) REGISTER SET A (B0H ....B1H) AND B (E0H ... E1H) Vertical Luminance Scaling Increment B1H / E1H D7..D4 B1H / E1H D3 ..D0 B0H / E0H D7..D4 YSCY7..4 0 0 B0H / E0H D3 ..D0 YSCY3..0 0 0 YSCY15..12 0 0 YSCY11..8 0 0 scale = 1024/1 (theoretical) zoom scale = 1024/1023 zoom scale = 1, equals 1024 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 scale = 1024/1025 down scale scale = 1/63.999 down scale 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Table 167 Vertical Chrominance Scaling Increment (SA B2, SA B3; SA E2, SA E3) REGISTER SET A (B2H ....B3H) AND B (E2H ... E3H) Vertical Chrominance Scaling Increment B3H / E3H D7..D4 B3H / E3H D3 ..D0 B2H / E2H D7..D4 YSCC7..4 0 0 B2H / E2H D3 ..D0 YSCC3..0 0 0 YSCC15..12 0 0 YSCC11..8 0 0 Note: this value must be set to the luminance value YSCY 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Confidential - NDA required page 192
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 168 Vertical Scaling Mode Control (SA B4; SA E4) REGISTER SET A (B4H) AND B (E4H) Vertical Scaling Mode Control D4 control bits YMIR x x D0 control bits YMODE 0 1 x
Pr eli ND m A ina req ry uir ed
vertical scaling performs linear interpolation between lines vertical scaling performs higher order accumulating interpolation, better alias suppression no mirroring lines are mirrored 0 1 x Table 169 Vertical Phase Offsets Chroma / Luma (SA B8, SA BC; SA E8, SA EC) REGISTER SET A (B8H) AND B (E8H) REGISTER SET A (BCH) AND B (ECH) D7 D6 D5 D4 D3 D2 D1 D0 Vertical Phase Offsets Chroma / Luma control bits YPC07 YPY07 0 0 1 control bits YPC06 YPY06 0 0 1 control bits YPC05 YPY05 0 1 1 control bits YPC04 YPY04 0 0 1 control bits YPC03 YPY03 0 0 1 control bits YPC02 YPY02 0 0 1 control bits YPC01 YPY01 0 0 1 control bits YPC00 YPY00 0 0 1 offset = 0 offset of 32/32 = 1 line offset of 255/32 lines Confidential - NDA required page 193
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
16.6 16.6.1
Programming Register - second PLL (PLL2) and Pulse Generator SUBADDRESS F0 TO F5 AND FF: SECOND PLL (PLL2) PROGRAMMING PARAMETERS
Pr eli ND m A ina req ry uir ed
Table 170 Number of LFCO cycles (= number of clock cycles divided by 4) per line (SA F0, SA F1) F1 h, D0 SPLPL8 SECOND PLL REGISTER SET (F0H, F1H) F0 h, D7...0 SPLPL7 .. SPLPL0 Number of LFCO cycles per line (= number of target clock cycles per line divided by 4) Target Clock Frequency = 29,5 MHz (625 lines per frame) 1D8 h 186 h Target Clock Frequency = 24,5454 MHz (525 lines per frame) Target Clock Frequency = 27 MHz (625 lines per frame) Target Clock Frequency = 27 MHz (525 lines per frame) Calculation Formula: 1B0 h 1AD h SPLPL[8:0] = (number of target clock cycles per line) / 4 Table 171 Selecting the source of horizontal reference signal for the second PLL (PLL2) (SA F1) Second PLL Register Set (F1 h) D1 second PLL (PLL2) horizontal reference signal source The combfilter decoder is selected as horiz. sync. source. SPHSEL 0 1 The XRH signal of the X-Port (input mode) is selected as horiz. sync. source. Confidential - NDA required page 194
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 172 Selecting the operation mode of the second PLL (PLL2) (SA F1) Second PLL Register Set (F1 h) second PLL (PLL2) operation mode Synthesize Clock: D3 SPMOD1 D2 SPMOD1
Pr eli ND m A ina req ry uir ed
The generated (CGC2) frequency depends on the nominal increment (SPNINC) only. The contribution of the loop filter is disabled. The I and P proportion of the loop filter is set to zero. PLL-closed (normal operation mode): 00 This is the normal operation mode of the second PLL (PLL2): the nominal increment plus the content of loop filter define the output (CGC2) frequency. PLL-hold: 01 The PLL keeps the last frequency before entering this mode. The content of the loop filter will be frozen. PLL-Re-Sync (pll_mode = 11) 10 The phase detector is constantly re-synchronized to the horizontal reference signal. The remaining phase error is fed into the loop filter. 11 Table 173 Loopfilter mode of the second PLL (PLL2) (SA F1) Second PLL Register Set (F1 h) D7 .. D4 0000 0001 0002 ... 1101 1110 1111 second PLL (PLL2) Loop Filter mode (P- / I-Parameter selection) Default adaptive mode (recommended) Fast mode reserved SPPI3 .. SPPI 0 Medium mode Slow mode Confidential - NDA required page 195
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 174 Nominal DTO increment (SA F2, SA F3) SECOND PLL REGISTER SET (F2 H, F3 H) Nominal Increment for the DTO of the second PLL (PLL2) Target Clock Frequency = 29,5 MHz CRYSTAL CLOCK FREQUENCY F3 h, D7 .. D0 SPNINC15 .. SPNINC8 F2 h, D7.. 0 SPNINC7 .. SPNINC0
Pr eli ND m A ina req ry uir ed
32.11 MHz 32.11 MHz 32.11 MHz 3ACC h 4CD2 h 30EC h 3FEB h 35D0 h 4650 h 24.576 MHz 24.576 MHz 24.576 MHz XTALFREQ Target Clock Frequency = 24,545 MHz Target Clock Frequency = 27 MHz Calculation Formula for the nominal increment depending on the Target Clock Frequency integer of ( (Target Clock Frequency) / ( 4 * XTALFREQ ) * 2^16) ) Table 175 Lock Status of the second PLL (PLL2) (SA F4) Second PLL Register Set (F4 H) D0 0 1 Lock Status of the second PLL (PLL2) second PLL (PLL2) un-locked second PLL (PLL2) locked SPLOCK Confidential - NDA required page 196
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 176 Maximum Phase Error Threshold for lock detection of the second PLL (PLL2) (SA FF) Second PLL Register Set (FF h) Maximum Phase Error Threshold for lock detection of the second PLL (PLL2) Maximum Phase Error >= 0 % Maximum Phase Error >= 6.25 % Maximum Phase Error >= 12.5 % Maximum Phase Error >= 25 % D3 .. D0 SPTHRM3 .. SPTHRM0 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
Pr eli ND m A ina req ry uir ed
Maximum Phase Error >= 18.75 % Maximum Phase Error >= 31.5 % Maximum Phase Error >= 37.5 % Maximum Phase Error >= 44 % Maximum Phase Error >= 50 % Maximum Phase Error >= 56 % Maximum Phase Error >= 63 % Maximum Phase Error >= 69 % Maximum Phase Error >= 75 % Maximum Phase Error >= 81 % Maximum Phase Error >= 88 % Maximum Phase Error >= 94 % Confidential - NDA required page 197
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 177 Number of Lines Threshold for lock detection of the second PLL (PLL2) (SA FF) Second PLL Register Set (FF h) Minimum Number of Lines while SPTHRM[3:0] must be smaller than specified before for lock detection of the second PLL (PLL2) will be indicated 7 lines 15 lines 23 lines 31 lines 39 lines 47 lines 55 lines 63 lines 71 lines 79 lines 87 lines 95 lines D7 .. D4 SPTHRL3 .. SPTHRL0 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
Pr eli ND m A ina req ry uir ed
103 lines 111 lines 119 lines 127 lines 16.6.2 SUBADDRESS F6 TO FB: PULSE GENERATOR PROGRAMMING Table 178 Number of LFCO cycles (= number of clock cycles divided by 4) per line (SA F5, SA F6) F6 h, D0 PULSE GENERATOR REGISTER SET (F5H, F6H) F5 h, D7...0 PGLEN8 PGLEN7 .. PGLEN0 This setting must be equal to the number of LFCO cycles per line since it defines the output line length at the I-port when driven by the Pulse Generator Target Clock Frequency = 29,5 MHz (625 lines per frame) 1D8 h 186 h Target Clock Frequency = 24,5454 MHz (525 lines per frame) Target Clock Frequency = 27 MHz (625 lines per frame) Target Clock Frequency = 27 MHz (525 lines per frame) Calculation Formula: 1B0 h 1AD h PGLEN[8:0] = (number of target clock cycles per line) / 4 Confidential - NDA required page 198
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 179 Selecting the source of horizontal reference signal for the PULSE Generator (SA F6) PULSE Generator Register Set (F6 H) PULSE Generator horizontal reference signal source for re-synchronisation D1 PGHSEL 0 1
Pr eli ND m A ina req ry uir ed
The combfilter decoder is selected as horiz. sync. source. The XRH signal of the X-Port (input mode) is selected as horiz. sync. source. Table 180 Resetting (Resynchronizing) the PULSE Generator to a horizontal synchronisation event. (SA F6) PULSE Generator Register Set (F6 H) D2 0 PULSE Generator horizontal reference signal source for re-synchronisation The Pulse generator is in free running mode. PGRES Software reset/resync for the Pulse Generator. The internal counter and thus all generated signals (Pulse A trigger, Pulse B trigger and Pulse C trigger) will be resyncronized to the incoming horiz. sync. source (defined by PGHSEL) as long as pulse_gen_res is programmed to '1' 1 Table 181 Pulse C trigger position for Task A (SA F6, SA F7) PULSE Generator Register Set for Start of line for scaler Register Set A (F6h ... F7h) F6H D7 ..D4 F7H D7..D4 F7H D3 ..D0 Pulse C trigger position for Task A data relative to the pulse generator counter measured in clock cycles. lowest value of pulse A ... PGHAPS 11...8 0 0 0 0 PGHAPS 7...4 0 0 0 0 PGHAPS 3...0 0 0 0 0 ... ... ... Recommended value for ITU style receiver operating with SAV codes aligned Recommended value for ITU style receiver operating with EAV codes aligned ... 60E hex (1550 decimal) 60E hex (1550 decimal) ... ... ... latest position of pulse A Note: If PGHAPS is greater than PGLEN * 4 then the pulse A will not be generated! 1 1 1 1 1 1 1 1 1 1 1 1 Confidential - NDA required page 199
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 182 Pulse B trigger position for Task B (SA F8, SA F9) PULSE Generator Register Set for Start of line for scaler Register Set B (F8h ... F9h) F8H D7 ..D04 F9H D7..D4 F9H D3 ..D0
Pr eli ND m A ina req ry uir ed
Pulse B trigger position for Task B data relative to the pule generator counter measured in clock cycles. lowest value of pulse B ... PGHBPS 11...8 0 0 0 0 PGHBPS 7...4 0 0 0 0 PGHBPS 3...0 0 0 0 0 ... ... ... Recommended value for ITU style receiver operating with SAV codes aligned Recommended value for ITU style receiver operating with EAV codes aligned ... PGHBPS = PGHAPS 60E hex (1550 decimal) PGHBPS = PGHAPS 60E hex (1550 decimal) ... ... ... latest position of pulse B Note: If PGHBPS is greater than PGLEN * 4 then the pulse B will not be generated! 1 1 1 1 1 1 1 1 1 1 1 1 Table 183Pulse C trigger position for sliced VBI data (SA FA, SA FB) PULSE Generator Register Set for end of line definition (FAh ... FBh) FAH D7 ..D04 FBH D7..D4 FBH D3 ..D0 Pulse C trigger position for sliced VBI data relative to the pule generator counter measured in clock cycles. lowest value of pulse C ... PGHCPS 11...8 0 0 0 0 PGHCPS 7...4 0 0 0 0 PGHCPS 3...0 0 0 0 0 ... ... ... Recommended value for ITU style receiver operating with SAV codes aligned Recommended value for ITU style receiver operating with EAV codes aligned ... PGHCPS = PGHBPS = PGHAPS 60E hex (1550 decimal) PGHCPS = (PGHAPS - 48 + (XD * 2)) mod (PGLEN * 4) ... ... ... latest position of pulse C Note: If PGHCPS is greater than PGLEN * 4 then the pulse C will not be generated! 1 1 1 1 1 1 1 1 1 1 1 1 Confidential - NDA required page 200
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
17 PROGRAMMING START SET-UP 17.1 Decoder part
Filename: SAA7115_Datasheet.fm
Confidential - NDA required page 201
The given values force the following behaviour of the SAA7115 video decoder part:
* Analog input conditions: NTSC M, PAL B, D, G, H, I or SECAM signal in CVBS format on input AI11(column 1) or Y/C-format on inputs AI11, AI21 (column 2) * Analog anti-alias filter and AGC active * Automatic field detection enabled * Automatic TV/VCR detection enabled
* Automatic color standard detection enabled (column 1 and 2: Auto mode 3: predefined filters, sharpness control disabled) * Standard ITU 656 output format enabled on expansion (X) port, see also subaddress 83h (X-port control) * Contrast, brightness and saturation control in accordance with ITU standards * Adaptive comb filter for luminance and chrominance activated * Pins LLC, LLC2, XTOUT, RTS0, RTS1 and RTCO are set to 3-state
* I-port (scaled video-output) and audio clock generation are disabled (lower power consumption), see corresponding sections to activate their functionality. * Columns 3 to 5 are examples for typical settings in non auto mode.
Table 184 Decoder part start set-up values for auto mode and the three main standards
SUB ADDR. (HEX)
yd re ar ni iu im eq lr e rA P D N
Datasheet SAA7115 CVIP2 VALUES (HEX) (3) NTSC M (CVBS) REGISTER FUNCTION CONTROL NAMES(1) REMARKS (1) FULL AUTO MODE (CVBS) 08 (2) FULL AUTO MODE (Y/C) 08 (4) PAL B, D, G, H AND I (CVBS) 08 (5) SECAM (CVBS) 00 01 chip version ID7 to ID0 read only 08 increment delay AOSL2, WPOFF, GUDL1, white peak control activated GUDL0 and IDEL3 to IDEL0 08 Version: Date: 02 analog input control 1 FUSE1, FUSE0, X,X, and CVBS signal expected at MODE3 to MODE0 input AI11 (CVBS-modes) Y signal expected at input AI11, C signal expected at input AI21 (Y/C-mode) C0 C8 C0 C0 C0 10/23/01 0.67
CS-PD Hamburg
Philips Semiconductors
Last edited by H. Lambers
VALUES (HEX) SUB ADDR. (HEX) REGISTER FUNCTION NAMES(1) (1) FULL AUTO MODE (CVBS) 20 (2) FULL AUTO MODE (Y/C) 20 (3) NTSC M (CVBS) (4) PAL B, D, G, H AND I (CVBS) 20 (5) SECAM (CVBS)
Filename: SAA7115_Datasheet.fm
Confidential - NDA required page 202
yd re ar ni iu im eq lr e rA P D N
CONTROL REMARKS 03 analog input control 2 X, HLNRS, VBSL, CPOFF, HOLDG, GAFIX, GAI28 and GAI18 GAI17 to GAI10 GAI27 to GAI20 HSB7 to HSB0 HSS7 to HSS0 AGC active with long vertical blanking, color peak control active 20 20 04 05 06 07 08 analog input control 3 analog input control 4 horizontal sync start horizontal sync stop sync control no influence no influence 90 90 90 90 90 90 90 90 90 90 just an example just an example EB E0 B0 EB E0 B0 EB E0 B0 EB E0 B0 EB E0 B0 AUFD, FSEL, FOET, HTC1, HTC0, HPLL, VNOI1 and VNOI0 automatic field detection active, automatic time constant setting active, vertical noise reduction active Datasheet SAA7115 CVIP2 09 luminance control BYPS, YCOMB, LDEL, LUBW and LUFI3 to LUFI0 LUBW and LUFI controls are automatically adjusted via AUTO[1:0] = 01 (= auto mode 3), therefore these settings take only effect at lower auto levels! 40 80 40 40 1B 0A luminance brightness control luminance contrast control DBRI7 to DBRI0 default brightness default contrast 80 80 80 80 80 0B DCON7 to DCON0 DSAT7 to DSAT0 44 44 44 44 44 0C 0D chrominance saturation control default saturation 40 40 40 40 40 Version: chrominance hue control HUEC7 to HUEC0 default hue 00 00 00 00 00 Date: 10/23/01 0.67
CS-PD Hamburg
Philips Semiconductors
Last edited by H. Lambers
VALUES (HEX) SUB ADDR. (HEX) REGISTER FUNCTION NAMES(1) (1) FULL AUTO MODE (CVBS) 07 (2) FULL AUTO MODE (Y/C) 07 (3) NTSC M (CVBS) (4) PAL B, D, G, H AND I (CVBS) 85 (5) SECAM (CVBS)
Filename: SAA7115_Datasheet.fm
Confidential - NDA required page 203
yd re ar ni iu im eq lr e rA P D N
CONTROL REMARKS 0E chrominance control 1 CDTO, CSTD2 to CSTD0, DCVF control is DCVF, FCTC, AUTO0 and automatically adjusted via CCOMB AUTO[1:0] = 01or 10 (= auto modes 2 and 3), therefore this setting takes only effect in auto modes 0 or 1 (AUTO[1:0] = 00 or 11) 8D D4 0F chrominance gain control ACGC and CGAIN6 to CGAIN0 automatic color gain control active via ACGC = 0, CGAIN setting has no effect auto level 3 active in column 1 and 2, CHBW and LCBW settings have no effect automatic color killer active 2A 2A 2A 2A 2A 10 chrominance control 2 OFFU1, OFFU0, OFFV1, OFFV0, CHBW and LCBW2 to LCBW0 COLO, RTP1, HDEL1, HDEL0, RTP0 and YDEL2 to YDEL0 06 06 06 06 00 Datasheet SAA7115 CVIP2 11 mode/delay control 00 00 00 00 00 12 RT signal control RTSE13 to RTSE10 and RTSE03 to RTSE00 RTCE, XRHS, XRVS1, XRVS0, HLSEL and OFTS2 to OFTS0 RTS0 and RTS1 are tristated 00 00 00 00 00 13 RT/X-port output control RTCO is tristated, Xport output format is set to ITU656-mode 00 00 00 00 00 14 analog/ADC/compatibility control CM99, UPTCV, AOSL1, AOSL0, XTOUTE, AUTO1, APCK1 and APCK0 analog output is disabled, crystal clock output is disabled, default adc sample phase selected 01 01 01 01 01 Version: Date: 15 16 17 VGATE start, FID change VGATE stop miscellaneous, VGATE configuration and MSBs VSTA7 to VSTA0 just an example 11 11 11 11 11 VSTO7 to VSTO0 just an example FE FE FE FE FE LLCE, LLC2E, LATY2 to LATY0, VGPS, VSTO8 and VSTA8 LLC and LLC2-outputs tristated, standard search latency is set to 3 fields (default) D8 D8 D8 D8 D8 10/23/01 0.67
CS-PD Hamburg
Philips Semiconductors
Last edited by H. Lambers
VALUES (HEX) SUB ADDR. (HEX) REGISTER FUNCTION NAMES(1) (1) FULL AUTO MODE (CVBS) 40 80 (2) FULL AUTO MODE (Y/C) 40 80 (3) NTSC M (CVBS) (4) PAL B, D, G, H AND I (CVBS) 40 80 (5) SECAM (CVBS)
Filename: SAA7115_Datasheet.fm
Confidential - NDA required page 204
yd re ar ni iu im eq lr e rA P D N
CONTROL REMARKS 18 19 raw data gain control QUAM/SECAM color killer levels RAWG7 to RAWG0 RAWO7 to RAWO0 QTHR3 to QTHR0, STHR3 to STHR0 default raw data gain 40 40 raw data offset control default raw data offset 80 80 1A default color killer thresholds default TV/VCR-switch sensitivity, xport output format 8 bit, automatic color limiter active, noise insensitive PAL/SECAM sequence correction 77 77 77 77 77 1B TV/VCR-detection sensitivity, xport output format (MSB), automatic color limiter, fast sequence correction control ATVT1 to ATVT0, X, OFTS3, x, ACOL, FSQC 42 42 42 42 42 1C enhanced combfilter control 1 HODG1 to HODG0, VEDG1 to VEDG0, MEDG1 to MEDG0, CMBT1 to CMBT0, VEDT1 to VEDT0 default combfilter parameters A9 A9 A9 A9 A9 Datasheet SAA7115 CVIP2 1D 1E enhanced combfilter control 2 status byte 1 video decoder X, X, X, X, X, X, VEDT1 to default combfilter VEDT0 parameters NFLD, HLCK, SLTCA, GLIMT, GLIMB, WIPA, DCSTD1 and DCSTD0 01 01 01 01 01 read only 1F status byte 2 video decoder INTL, HLVLN, FIDT, STTB, TYPE3, COLSTR, COPRO and RDCAP read only Version: Date: 10/23/01 0.67
CS-PD Hamburg
Philips Semiconductors
Last edited by H. Lambers
VALUES (HEX) SUB ADDR. (HEX) REGISTER FUNCTION NAMES(1) (1) FULL AUTO MODE (CVBS) 00 (2) FULL AUTO MODE (Y/C) 00 (3) NTSC M (CVBS) (4) PAL B, D, G, H AND I (CVBS) 00 (5) SECAM (CVBS)
Filename: SAA7115_Datasheet.fm
Confidential - NDA required page 205
Note
1. All "X" values must be set to logic 0.
yd re ar ni iu im eq lr e rA P D N
CONTROL REMARKS 41 to 57 83 Line Control registers (located in the data slicer section) LCR02[7:0] to LCR24[7:0] request processed video data type for all lines at xport 00 00 Xport IO Control registers XPCK1 to XPCK0, XRQT, enable xport output with (located in the scaler XPE1 to XPE0 correct timing global section) Power save control registers (located in the scaler global section) 31 31 31 31 31 88 XPCK1 to XPCK0, XRQT, enable only the required XPE1 to XPE0 ADC's and the video decoder, switch scaler and audio clock generation into sleep mode. 4A CA 4A 4A 4A Datasheet SAA7115 CVIP2 Version: Date: 10/23/01 0.67
CS-PD Hamburg
Philips Semiconductors
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
17.2
Audio clock generation part
The given values force the following behaviour of the SAA7115 audio clock generation part:
Pr eli ND m A ina req ry uir ed
* Expected field frequency is 59.94 Hz (e.g. NTSC M standard) * AMCLK is frame-locked to the incoming video signal * Generated audio master clock frequency at pin AMCLK is 256 x 44.1 kHz = 11.2896 MHz * AMCLK is directly generated by the audio clock PLL, no CGC2 is used * ASCLK (bit clock) = 32 x 44.1 kHz = 1.4112 MHz * ALRCLK (word select) is 44.1 kHz. * AMCLK is externally connected to AMXCLK [short-cut between pins 37 and 41] Table 185 Audio clock part set-up values SUB ADDRESS (HEX) 30 31 32 33 34 35 36 37 38 39 START VALUES REGISTER FUNCTION BIT NAME(1) 7 6 5 4 3 2 1 0 HEX BC DF 02 00 audio master clock cycles per field; bits 7 to 0 audio master clock cycles per field; bits 15 to 8 audio master clock cycles per field; bits 17 and 16 reserved audio master clock nominal increment; bits 7 to 0 audio master clock nominal increment; bits 15 to 8 audio master clock nominal increment; bits 21 to 16 reserved ACPF7 to ACPF0 10111100 11011111 ACPF15 to ACPF8 X, X, X, X, X, X, ACPF17 and ACPF16 0 0 0 0 0 0 1 0 00000000 X, X, X, X, X, X, X, X ACNI7 to ACNI0 11001101 11001100 CD CC 3A 00 03 10 ACNI15 to ACNI8 X, X, ACNI21 to ACNI16 00111010 00000000 00000011 00010000 X, X, X, X, X, X, X, X clock ratio AMXCLK to ASCLK clock ratio ASCLK to ALRCLK X, X, SDIV5 to SDIV0 X, X, LRDIV5 to LRDIV0 3A audio clock generator basic set-up UCGC, CGCDIV, X, X, APLL, AMVR, LRPH, SCPH 00000000 00 3B to 3F reserved X, X, X, X, X, X, X, X 00000000 00 Note 1. All "X" values must be set to logic 0. 2. See also chapter 8.7: "Audio clock generation (subaddresses 30H to 3FH)" for more examples. Confidential - NDA required page 206
Filename: SAA7115_Datasheet.fm
* Used crystal is 24.576 MHz
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
17.3
Data slicer and data type control part
The given values force the following behaviour of the SAA7115 VBI-data slicer part:
Pr eli ND m A ina req ry uir ed
* All other lines are processed as active video * Sliced data are framed by ITU 656 like SAV/EAV sequence, no re-coding of data bytes. * Sliced data packages for all defined vbi standards, see Table 107: "Sliced data output modes (SA 5D)" * example for ITU656 correct line counting, field ID of VBI slicer is swapped (see 8.2 and 8.4) Table 186 Data slicer start set-up values SUB ADDRESS (HEX) 40 START VALUES REGISTER FUNCTION BIT NAME(1) 7 6 5 4 3 2 1 0 HEX 01000000 00000000 01000000 00000000 00000000 01000111 40 00 00 00 47 slicer control 1 CHKWSS, HAM_N, FCE, HUNT_N, X, X, X, X LCRn_7 to LCRn_0 (n = 2 to 20) 41 to 53 54 58 59 55 to 57 line control register 2 to 20 line control register 21 LCR21_7 to LCR21_0 4F line control register 22 to 24 horizontal offset for slicer vertical offset for slicer LCRn_7 to LCRn_0 (n = 22 to 24) FC7 to FC0 HOFF7 to HOFF0 VOFF7 to VOFF0 programmable framing code 5A 0 0 0 0 0 1 1 0 06(2) 1 0 0 0 0 0 1 1 83(2) 00000000 00001100 00000000 00000000 00 00 00 5B field offset and MSBs for horizontal and vertical offset reserved sliced data output mode reserved FOFF, X, VEP, VOFF8, X, HOFF10 to HOFF8 X, X, X, X, X, X, X, X 5C 5D 5E 5F 60 61 X, X, X, SLDOM4 to SLDOM0 X, X, X, X, X, X, X, X 0C sliced data identification code X, X, SDID5 to SDID0 slicer status byte 0 -, FC8V, FC7V, VPSV, PPV, CCV, -, - -, -, F21_N, LN8 to LN4 LN3 to LN0, DT3 to DT0 read-only register slicer status byte 1 read-only register 62 slicer status byte 2 read-only register Notes 1. All X values must be set to logic 0. 2. Changes for 50 Hz/625 line systems: subaddress 5AH = 03H and subaddress 5BH = 03H. Confidential - NDA required page 207
Filename: SAA7115_Datasheet.fm
* Closed captioning data are expected at line 21 of field 1 (60 Hz/525 line system)
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
17.4
Scaler and interfaces
Table 187 shows some examples for the scaler programming with:
Pr eli ND m A ina req ry uir ed
* fisc = fine scale ratio * vsc = vertical scale ratio. number of input pixel The ratio is defined as: ---------------------------------------------------------number of output pixel In the following settings the VBI-data slicer is inactive. To activate the VBI-data slicer, SLDOM 5DH[4:0] has to be set to > `00H'. To compensate the running-in of the vertical scaler, the vertical input window lengths are extended by 2 to 290 lines, respectively 242 lines for XS, but the scaler increment calculations are done with 288, respectively 240 lines. Trigger condition For trigger condition STRC[1:0]90H[1:0] not equal `00'. If the value of (YO + YS) is greater equal 262 (NTSC), respectively 312 (PAL) the output field rate is reduced to 30 Hz, respectively 25 Hz. Horizontal and vertical offsets (XO and YO) have to be used to adjust the displayed video in the display window. As this adjustment is application dependent, the listed values are only dummy values. Maximum zoom factor The maximum zoom factor is dependent on the back-end data rate and therefore back-end clock and data format dependent (8 or 16-bit output). The maximum horizontal zoom is limited to about 3.5, due to internal data path restrictions. Confidential - NDA required page 208
Filename: SAA7115_Datasheet.fm
* prsc = prescale ratio
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
17.4.1
EXAMPLES
Table 187 Example configurations
Pr eli ND m A ina req ry uir ed
EXAMPLE NUMBER 1 SCALER SOURCE AND REFERENCE EVENTS INPUT OUTPUT WINDOW WINDOW SCALE RATIOS analog input to 8-bit I-port output, with SAV/EAV codes and `8010' blanking, 8-bit serial byte stream decoder output at X-port; acquisition trigger at rising edge vertical and rising edge horizontal reference signal; `1' active H and V-gates on IGPH and IGPV, IGP0 = field ID, IGP1 = sliced VBI data flag, IMPAK = `1' = the pulse generator need to be programmed (addr. 0xF5 to 0xFB) IDQ qualifier logic 1 active 720 x 240 720 x 240 prsc = 1; fisc = 1; vsc = 1 2 window definitions and scale ratio according SQP NTSC-M 704 x 240 640 x 240 prsc = 1; analog input to 8-bit I-port output, with SAV/EAV codes and fisc = 1.1; `8010' blanking, 8-bit serial byte stream decoder output at vsc = 1 X-port; acquisition trigger at rising edge vertical and rising edge horizontal reference signal; `1' active H and V-gates on IGPH and IGPV, IGP0 = field ID, IGP1 = sliced VBI data flag, IMPAK = `1' = the pulse generator need to be programmed (addr. 0xF5 to 0xFB) PLL2 clock used (ICKS[1:0] = 2), refer to section 17.5 , Example 2 IDQ qualifier logic 1 active 3 window definitions and scale ratio according SQP PAL-BG 704 x 288 768 x 288 prsc = 1; fisc = 0.91667; analog input to 16-bit output, without SAV/EAV codes, Y on vsc = 1 I-port, CB-CR on H-port and decoder output at X-port; acquisition trigger at rising edge vertical and rising edge horizontal reference signal; `1' active H-gate and V-sync on IGPH and IGPV, IGP0= field ID, IGP1 = filled flag, IMPAK = `1' = the pulse generator need to be programmed (addr. 0xF5 to 0xFB) PLL2 clock used (ICKS[1:0] = 2) refer to sect.17.5 , Example 3 IDQ = CREF like qualifier at (PLL2 clock )/2 data rate X-port input 8 bit with SAV/EAV codes, no reference signals on XRH and XRV, XCLK as gated clock; field detection and acquisition trigger on different events; acquisition triggers at falling edge vertical and rising edge horizontal; I-port output 8 bit with SAV/EAV codes like example number 1 X-port and H-port for 16-bit Y-CB-CR 4 : 2 : 2 input (if no 16-bit output selected); XRH and XRV as references; field detection and acquisition trigger at falling edge vertical and rising edge horizontal; I-port output 8 bit with SAV/EAV codes, but Y only output 720 x 240 352 x 288 prsc = 2; fisc = 1.022; vsc = 0.8333 4 5 720 x 288 200 x 80 prsc = 2; fisc = 1.8; vsc = 3.6 Confidential - NDA required page 209
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Table 188 Scaler and interface configuration example I2C-BUS ADDRESS (HEX) EXAMPLE 1 EXAMPLE 2 EXAMPLE 3 EXAMPLE 4 EXAMPLE 5 HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC MAIN FUNCTIONALITY
Filename: SAA7115_Datasheet.fm
Confidential - NDA required page 210
Global settings 80
Task A: scaler input configuration and output format settings 90 task handling 91 scaler input source and format definition I-port output formats and configuration
Input and output window definition 94 95
yd re ar ni iu im eq lr e rA P D N
task enable, IDQ and back-end clock definition 90 00 - 92 - 9A 00 - 10 - 10 - 81 V-blanking and FID source selection - 00 - - 00 - 00 - 83 XCLK output phase and X-port output enable IGPH, IGPV, IGP0 and IGP1 output definition signal polarity control and I-port byte swapping 31 - 31 - 31 - 10 - 10 - 84 80 - 80 00 - - - 04 00 - - - A0 10 45 - - - A0 10 45 - - - 85 86 00 - - FIFO flag thresholds, video enable and data packing, if IMPAK = `1', the pulse generator needs to be programmed (addr. 0xF5 to 0xFB) power save control and software reset C5 C5 EA 87 ICLK and IDQ output phase and I-port enable 31 - 31 - - 31 - - 31 - 31 - - Datasheet SAA7115 CVIP2 88 F0 - F0 F0 F0 - F0 00 - 00 - 00 - 00 - 00 - 08 - 08 - 08 - 18 - 38 - 92 reference signal definition at scaler input 00 - 00 - 00 - 19 - 11 - 93 C0 - C0 - 00 - C0 - 84 - horizontal input offset (XO) 04 4 - 10 16 - 10 16 - 04 4 - 04 4 - 00 00 00 00 00 96 97 horizontal input (source) window length (XS) vertical input offset (YO) D0 02 07 01 720 - C0 02 07 704 - C0 02 39 704 - D0 02 0A 00 F2 00 0 720 - 10 - D0 02 0A 00 22 0 720 - 10 - Version: Date: 98 99 263 - 263 - 313 - 01 01 9A 9B vertical input (source) window length (YS) FMOD bit D7 06 1 262 - 1 06 1 262 - 1 38 1 312 - 1 242 - 0 290 - 0 01 01 01 01 10/23/01 0.67
CS-PD Hamburg
Philips Semiconductors
Last edited by H. Lambers
I2C-BUS ADDRESS (HEX) 9C 9E 9F 9D
EXAMPLE 1 EXAMPLE 2 EXAMPLE 3 EXAMPLE 4 EXAMPLE 5 MAIN FUNCTIONALITY HEX D0 02 07 DEC 720 - HEX 80 DEC 640 - HEX 00 DEC 768 - HEX 60 DEC 352 - HEX C8 00 50 DEC 200 - 80 -
Filename: SAA7115_Datasheet.fm
Confidential - NDA required page 211
Prefiltering and prescaling A0 A1
Horizontal phase scaling A8 A9
Vertical scaling B0 B1
yd re ar ni iu im eq lr e rA P D N
horizontal output (destination) window length (XD) 02 03 01 vertical output (destination) window length (YD) 263 - 07 263 - 39 313 - 20 288 - 01 01 01 01 00 integer prescale (value `00' not allowed) accumulation length for prescaler scaler brightness control scaler contrast control scaler saturation control 01 - 01 - 01 - 02 - 02 - 00 - 00 - 00 - 02 - 03 - - A2 A4 A5 A6 FIR prefilter and prescaler DC normalization 00 - 00 - 00 - AA 80 40 40 - F2 80 11 11 80 128 64 64 80 128 64 64 80 128 64 64 128 64 64 128 17 17 40 40 40 40 40 40 Datasheet SAA7115 horizontal scaling increment for luminance horizontal phase offset luminance 00 1024 - - 66 1126 - - AA 03 00 938 - - 18 1048 - - 34 1844 - - CVIP2 04 04 04 07 AA 00 00 00 00 AC AE horizontal scaling increment for chrominance 00 512 - - 33 563 - - D5 01 00 469 - - 0C 02 00 524 - - 9A 03 00 922 - - AD 02 02 horizontal phase offset chrominance 00 00 vertical scaling increment for luminance 00 04 1024 - 00 1024 - 00 1024 - 55 853 - 66 3686 - 04 04 03 0E 66 B2 B3 vertical scaling increment for chrominance vertical scaling mode control 00 1024 - - 00 1024 - - 00 1024 - - 55 853 - - 3686 - - 04 04 04 03 0E 01 Version: B4 00 00 00 00 Date: B8 to BF vertical phase offsets luminance and chrominance (need to be used for interlace correct scaled output) start with B8 to BF at 00H, if there are no problems with the interlaced scaled output optimize according to Section 8.3.3.2 start with B8 to BF at 00H, if there are no problems with the interlaced scaled output optimize according to Section 8.3.3.2 10/23/01 0.67
CS-PD Hamburg
Philips Semiconductors
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
17.5
PLL2 and pulse generator control part
Pr eli ND m A ina req ry uir ed
* Example 2: PLL2 - synthesis of line locked square pixel clock of 29.5 MHz from 32.11 MHz crystal pulse generator - pulse generation for 1888 clock cycles per line and video A (768 pixel=1544 bytes) + sliced VBI, EAV aligned, medium pixel buffering, PGHCPS somewhere in the allowed range a corresponding scaler programming can be found in sect. 17.4 , Example 3 * PLL2 in normal operation (SPMOD[1:0] = `01') for all examples * for 32.11 Mhz crystal (external strapping resistor required) Confidential - NDA required page 212
Filename: SAA7115_Datasheet.fm
The given values force the following behaviour of the SAA7115 PLL2 clock and pulse generation part, where the pulse generation values are for 8 bit I-port output with ITU like code sequences: * Example 1: PLL2 - synthesis of line locked square pixel clock of 24.545454 MHz from 24.576 MHz crystal pulse generator - pulse generation for 1560 clock cycles per line and video (640 pixel=1288 bytes) from page A and raw data (1448 bytes) from page B, no deep buffering, delay only used for EAV alignment, VBI stream as timing master a corresponding scaler programming (only for page A) can be found in sect. 17.4 , Example 2
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
Table 189 PLL2 and pulse generator start set-up values SUB ADDRESS (HEX) F0 F1 EXAMPLE 1 EXAMPLE 2 REGISTER FUNCTION BIT NAME(1) HEX 86 DEC 390 HEX D8 05 DEC 472
Pr eli ND m A ina req ry uir ed
LFCO's per line (LSB's) SPLPL7 to SPLPL0 PI-parameter selection, PLL mode, PLL-Hsync-selection, LFCO's per line (MSB) SPPI3 to SPPI0, SPMOD1, SPMOD0, SPHSEL, SPLPL8 05 F2 Nominal PLL2 DTO increment SPNINC7 to SPNINC0 (LSB's) EB 3F 16363 CC 3A 15052 F3 Nominal PLL2 DTO increment SPNINC15 to SPNINC8 (MSB's) PLL2 lock status F4 -, -, -, -, -, -, -, SPLOCK F5 Pulse generator line length (LSB's) PGLEN7 to PGLEN0 86 390 D8 472 F6 Pulse A position (LSB's), PGHAPS3 to PGHAPS0, X, Pulsegen resync and Hsync PGRES, PGHSEL, selection, Pulse generator line PGLEN8 length (MSB) Pulse A position (MSB's) Pulse B position (LSB's) PGHAPS11 to PGHAPS4 PGHBPS3 to PGHBPS0,X,X,X,X 01 C1 F7 F8 13 304 2B 00 700 0 00 144 F9 Pulse B position (MSB's) Pulse C position (LSB's) PGHBPS11 to PGHBPS4 09 00 00 FA PGHCPS3 to PGHCPS0,X,X,X,X C0 12 1536 0 300 0 FB FF Pulse C position (MSB's) PGHCPS11 to PGHCPS4 60 FC to FE reserved X, X, X, X, X, X, X, X 00 00 PLL locking thresholds SPTHRL3 to SPTHR0, SPTHRM3 to SPTHRM0 88 136 88 136 Notes 1. All X values must be set to logic 0. 2. max. values for pulse positions are 4 x PGLEN[8:0], e.g. PGLEN = 429, PGHxPS max = 1716. 3. the position counter starts with count `1', for the value of `0' no trigger pulses are generated Confidential - NDA required page 213
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors CS-PD Hamburg
CVIP2 Datasheet SAA7115
Date: Version:
10/23/01 0.67
18 PACKAGE OUTLINE
LQFP100: plastic low profile quad flat package; 100 leads; body 14 x 14 x 1.4 mm SOT407-1
Pr eli ND m A ina req ry uir ed
c
y X A 75 51 76 50 ZE e E HE A A2 A1 (A 3) wM bp Lp L pin 1 index 100 26 detail X 1 25 e ZD vM A bp wM D B HD vM B 0 5 10 mm scale DIMENSIONS (mm are the original dimensions) UNIT mm A max. 1.6 A1 A2 A3 bp c D (1) E (1) e HD HE L Lp v w y Z D (1) Z E (1) 1.15 0.85 1.15 0.85 0.15 0.05 1.45 1.35 0.25 0.27 0.17 0.20 0.09 14.1 13.9 14.1 13.9 0.5 16.25 16.25 15.75 15.75 1.0 0.75 0.45 0.2 0.08 0.08 7 0o
o
Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. OUTLINE VERSION REFERENCES
IEC
JEDEC
EIAJ
EUROPEAN PROJECTION
ISSUE DATE 00-01-19 00-02-01
SOT407-1
136E20
MS-026
Confidential - NDA required
page 214
Filename: SAA7115_Datasheet.fm
Last edited by H. Lambers


▲Up To Search▲   

 
Price & Availability of SAA7115

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X